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CHAPTER OVERVIEW
1: RIGHT TRIANGLE TRIGONOMETRY ANGLES
Trigonometry is the study of the relations between the sides and angles of triangles. The word
“trigonometry” is derived from the Greek words trigono (τρ´ιγωνo), meaning “triangle”, and metro
(µǫτρω´ ), meaning “measure”. Though the ancient Greeks, such as Hipparchus and Ptolemy, used
trigonometry in their study of astronomy between roughly 150 B.C. - A.D. 200, its history is much
older.

1.1: ANGLES
In elementary geometry, angles are always considered to be positive and not larger than . You
also learned that the sum of the angles in a triangle equals , and that an isosceles triangle is a
triangle with two sides of equal length. Recall that in a right triangle one of the angles is a right
angle. Thus, in a right triangle one of the angles is  and the other two angles are acute angles whose sum is  (i.e. the other two
angles are complementary angles).

1.2: TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE
For a right triangle △ABC, with the right angle at C and with lengths a, b, and c. For the acute angle A, call the leg BC its opposite
side, and call the leg AC its adjacent side. Recall that the hypotenuse of the triangle is the side AB. The ratios of sides of a right
triangle occur often enough in practical applications to warrant their own names, so we can define the six trigonometric functions of
A.

1.3: APPLICATIONS AND SOLVING RIGHT TRIANGLES
Throughout its early development, trigonometry was often used as a means of indirect measurement, e.g. determining large distances
or lengths by using measurements of angles and small, known distances. Today, trigonometry is widely used in physics, astronomy,
engineering, navigation, surveying, and various fields of mathematics and other disciplines. In this section we will see some of the
ways in which trigonometry can be applied. Your calculator should be in degree mode for these examples.

1.4: TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
To define the trigonometric functions of any angle - including angles less than 0° or greater than 360° - we need a more general
definition of an angle. We say that an angle is formed by rotating a ray OA about the endpoint O (called the vertex), so that the ray is
in a new position, denoted by the ray OB. The ray OA is called the initial side of the angle, and OB is the terminal side of the angle.

1.5: ROTATIONS AND REFLECTIONS OF ANGLES
Now that we know how to deal with angles of any measure, we will take a look at how certain geometric operations can help simplify
the use of trigonometric functions of any angle, and how some basic relations between those functions can be made. The two
operations on which we will concentrate in this section are rotation and reflection.

1.E: RIGHT TRIANGLE TRIGONOMETRY ANGLES (EXERCISES)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for college
students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is taken than usual.
Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

360
∘

180
◦

90
◦

90
◦
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1.1: Angles
Recall the following definitions from elementary geometry:

a. An angle is acute if it is between  and .
b. An angle is a right angle if it equals .
c. An angle is obtuse if it is between  and .
d. An angle is a straight angle if it equals .

Figure 1.1.1 Types of angles

In elementary geometry, angles are always considered to be positive and not larger than . For now we will only consider
such angles. The following definitions will be used throughout the text:

a. Two acute angles are complementary if their sum equals . In other words, if 
are complementary if .

b. Two angles between  are supplementary if their sum equals . In other words, if 
 are supplementary if .

c. Two angles between  are conjugate (or explementary) if their sum equals . In other words, if 
.

Figure 1.1.2 Types of pairs of angles

Instead of using the angle notation  to denote an angle, we will sometimes use just a capital letter by itself (e.g. ) or
a lowercase variable name (e.g. ). It is also common to use letters (either uppercase or lowercase) from the Greek
alphabet, shown in the table below, to represent angles:

Table 1.1 The Greek alphabet

In elementary geometry you learned that the sum of the angles in a triangle equals , and that an isosceles triangle is a
triangle with two sides of equal length. Recall that in a right triangle one of the angles is a right angle. Thus, in a right

0° 90°
90°

90° 180°
180°

360∘

90◦ ≤ ∠A, ∠B ≤  then ∠A and ∠B0◦ 90◦

∠A+∠B = 90◦

 and 0◦ 180◦ 180◦

≤ ∠A, ∠B ≤  then ∠A and ∠B0◦ 180◦ ∠A+∠B = 180◦

 and 0◦ 360◦ 360◦

≤ ∠A, ∠B ≤  then ∠A and ∠B are conjugate if ∠A+∠B =0◦ 360◦ 360◦

∠A A,B,C
x, y, t

180◦
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triangle one of the angles is  and the other two angles are acute angles whose sum is  (i.e. the other two angles are
complementary angles).

Figure 1.1.4

By knowing the lengths of two sides of a right triangle, the length of the third side can be determined by using the
Pythagorean Theorem:

Figure 1.1.5 Similar triangles 

Recall that triangles are similar if their corresponding angles are equal, and that similarity implies that corresponding sides are
proportional. Thus, since  is similar to , by proportionality of corresponding sides we see that

Since  is similar to , comparing horizontal legs and hypotenuses gives

Note: The symbols  and  denote perpendicularity and similarity, respectively. For example, in the above proof we had 
 and .

For triangle , the Pythagorean Theorem says that

90◦ 90◦

α+ 3α+α = ⇒ 5α = ⇒ α = ⇒180◦ 180◦ 36◦ X = , Y = 3 × = , Z =36◦ 36◦ 108◦ 36◦

QED

The square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of
the lengths of its legs.

△ ABC,△ CBD,△ ACD

△ABC △CBD

 is to   (hypotenuses) as   is to   (vertical legs) ⇒   =   ⇒ cd  =    .AB
¯ ¯¯̄¯̄¯̄

CB
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

BD
¯ ¯¯̄¯̄¯̄ c

a

a

d
a2

△ABC △ACD

  =   ⇒   =     −  cd  =     −   ⇒   +    =    . QED
b

c−d

c

b
b2 c2 c2 a2 a2 b2 c2

⊥ ∼

⊥CD
¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄

△ABC ∼△CBD ∼△ACD

For triangle , the Pythagorean Theorem says that△ABC

  +     =   ⇒   =  25  −  16  =  9 ⇒  .a2 42 52 a2 a  =  3

△DEF

  +     =   ⇒   =  4  −  1  =  3 ⇒  .e2 12 22 e2 e  =   3
–

√
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For triangle , the Pythagorean Theorem says that

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

△XYZ

  +     =   ⇒   =  2 ⇒  .12 12 z2 z2 z  =   2
–

√

Let  be the height at which the ladder touches the wall. We can assume that the ground makes a
right angle with the wall, as in the picture on the right. Then we see that the ladder, ground, and
wall form a right triangle with a hypotenuse of length 17 ft (the length of the ladder) and legs with
lengths 8 ft and  ft. So by the Pythagorean Theorem, we have

h

h

  +     =   ⇒   =  289  − 64  =  225 ⇒  .h2 82 172 h2 h  =  15 ft
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1.2: Trigonometric Functions of an Acute Angle
Consider a right triangle , with the right angle at  and with lengths , , and , as in the figure on the right. For the acute angle ,
call the leg  its opposite side, and call the leg  its adjacent side. Recall that the hypotenuse of the triangle is the side . The ratios
of sides of a right triangle occur often enough in practical applications to warrant their own names, so we define the six trigonometric
functions of  as follows:

Table 1.2 The six trigonometric functions of 

We will usually use the abbreviated names of the functions. Notice from Table 1.2 that the pairs  and ,  and , and 
 and  are reciprocals:

For the right triangle  shown on the right, find the values of all six trigonometric functions of the acute angles  and .

Solution:

The hypotenuse of  has length . For angle , the opposite side  has length  and the adjacent side  has length . Thus:

△ABC C a b c A

BC
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄

A

A

sinA cscA cosA secA
tanA cotA

Example 1.5
△ABC A B

△ABC 5 A BC
¯ ¯¯̄¯̄¯̄

3 AC
¯ ¯¯̄¯̄¯̄

4

sinA  =     =   cosA  =     =   tanA  =     =  
opposite

hypotenuse

3

5

adjacent

hypotenuse

4

5

opposite

adjacent

3

4

cscA  =     =   secA  =     =   cotA  =     =  
hypotenuse

opposite

5

3

hypotenuse

adjacent

5

4

adjacent

opposite

4

3
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For angle , the opposite side  has length  and the adjacent side  has length . Thus:

Notice in Example 1.5 that we did not specify the units for the lengths. This raises the possibility that our answers depended on a triangle of
a specific physical size.

For example, suppose that two different students are reading this textbook: one in the United States and one in Germany. The American
student thinks that the lengths , , and  in Example 1.5 are measured in inches, while the German student thinks that they are measured in
centimeters. Since  in   cm, the students are using triangles of different physical sizes (see Figure 1.2.1 below, not drawn to scale).

Figure 1.2.1: 

If the American triangle is  and the German triangle is , then we see from Figure 1.2.1 that  is similar to 
, and hence the corresponding angles are equal and the ratios of the corresponding sides are equal. In fact, we know that common

ratio: the sides of  are approximately  times longer than the corresponding sides of . So when the American student
calculates  and the German student calculates , they get the same answer:

Likewise, the other values of the trigonometric functions of  and  are the same. In fact, our argument was general enough to work with
any similar right triangles. This leads us to the following conclusion:

When calculating the trigonometric functions of an acute angle , you may use any right triangle which has  as one of the angles.

Since we defined the trigonometric functions in terms of ratios of sides, you can think of the units of measurement for those sides as
canceling out in those ratios. This means that the values of the trigonometric functions are unitless numbers. So when the American student
calculated  as the value of  in Example 1.5, that is the same as the  that the German student calculated, despite the different
units for the lengths of the sides.

Find the values of all six trigonometric functions of .

Solution:

Since we may use any right triangle which has  as one of the angles, use the simplest one: take a square whose sides are all  unit
long and divide it in half diagonally, as in the figure on the right. Since the two legs of the triangle  have the same length, 

 is an isosceles triangle, which means that the angles  and  are equal. So since , this means that we must have 
. By the Pythagorean Theorem, the length  of the hypotenuse is given by

B AC
¯ ¯¯̄¯̄¯̄

4 BC
¯ ¯¯̄¯̄¯̄

3

sinB  =     =   cosB  =     =   tanB  =     =  
opposite

hypotenuse

4

5

adjacent

hypotenuse

3

5

opposite

adjacent

4

3
(1.2.1)

cscB  =     =   secB  =     =   cotB  =     =  
hypotenuse

opposite

5

4

hypotenuse

adjacent

5

3

adjacent

opposite

3

4
(1.2.2)

3 4 5
1 ≈ 2.54

△ ABC ∼△ A'B'C'

△ABC △A
′
B

′
C

′
△ABC

△A
′
B

′
C

′

△ABC 2.54 △A
′
B

′
C

′

sinA sinA′

△ABC   ∼  △ ⇒   =   ⇒   =   ⇒ sinA  =   sinA
′
B

′
C

′ BC

B′C ′

AB

A′B′

BC

AB

B′C ′

A′B′
A

′ (1.2.3)

A A
′

A A

3/5 sinA 3/5

Example 1.6
45∘

45∘ 1
△ABC

△ABC A B A+B = 90∘

A =B = 45∘
c
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Thus, using the angle  we get:

Note that we would have obtained the same answers if we had used any right triangle similar to . For example, if we multiply
each side of  by , then we would have a similar triangle with legs of length  and hypotenuse of length . This would give

us , which equals  as before. The same goes for the other functions.

Find the values of all six trigonometric functions of .

Solution:

Since we may use any right triangle which has  as one of the angles, we will use a simple one: take a triangle whose sides are all 
units long and divide it in half by drawing the bisector from one vertex to the opposite side, as in the figure on the right. Since the
original triangle was an equilateral triangle (i.e. all three sides had the same length), its three angles were all the same, namely .
Recall from elementary geometry that the bisector from the vertex angle of an equilateral triangle to its opposite side bisects both the
vertex angle and the opposite side. So as in the figure on the right, the triangle  has angle  and angle , which
forces the angle  to be . Thus,  is a right triangle. We see that the hypotenuse has length  and the leg  has
length . By the Pythagorean Theorem, the length  of the leg  is given by

Thus, using the angle  we get:

Notice that, as a bonus, we get the values of all six trigonometric functions of , by using angle  in the same triangle 
 above:

 is an acute angle such that . Find the values of the other trigonometric functions of .

  =     +     =  2 ⇒ c  =    c
2 12 12 2

–
√ (1.2.4)

A

sin   =     =   cos   =     =   tan   =     =     =  145∘ opposite

hypotenuse

1

2
–

√
45∘ adjacent

hypotenuse

1

2
–

√
45∘ opposite

adjacent

1

1
(1.2.5)

csc   =     =   sec   =     =   cot   =     =     =  145∘ hypotenuse

opposite
2
–

√ 45∘ hypotenuse

adjacent
2
–

√ 45∘ adjacent

opposite

1

1
(1.2.6)

△ABC

△ABC 2
–

√ 2
–

√ 2

sin =45∘ 2√
2

=
2√

⋅2√ 2√
1
2√

Example 1.7
60∘

60∘ 2

60∘

△ABC A = 60∘
B = 30∘

C 90∘
△ABC c =AB = 2 AC

¯ ¯¯̄¯̄¯̄

b =AC = 1 a BC
¯ ¯¯̄¯̄¯̄

  +     =   ⇒   =     −     =  3 ⇒ a  =    .a
2

b
2

c
2

a
2 22 12 3

–
√ (1.2.7)

A

sin = = cos = = tan = = =60∘ opposite

hypotenuse

3
–

√

2
60∘ adjacent

hypotenuse

1

2
60∘ opposite

adjacent

3
–

√

1
3
–

√ (1.2.8)

csc = = sec = = 2 cot = =  60∘ hypotenuse

opposite

2

3
–

√
60∘ hypotenuse

adjacent
60∘ adjacent

opposite

1

3
–

√
(1.2.9)

30∘
B = 30∘

△ABC

sin = = cos = = tan = =30∘ opposite

hypotenuse

1

2
30∘ adjacent

hypotenuse

3
–

√

2
30∘ opposite

adjacent

1

3
–

√
(1.2.10)

csc = = 2 sec = = cot = = =30∘ hypotenuse

opposite
30∘ hypotenuse

adjacent

2

3
–

√
30∘ adjacent

opposite

3
–

√

1
3
–

√ (1.2.11)

Example 1.8

A sinA = 2
3

A
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Solution:

In general it helps to draw a right triangle to solve problems of this type. The reason is that the trigonometric functions were defined in
terms of ratios of sides of a right triangle, and you are given one such function (the sine, in this case) already in terms of a ratio: 

. Since  is defined as , use  as the length of the side opposite  and use  as the length of the hypotenuse in
a right triangle  (see the figure above), so that . The adjacent side to  has unknown length , but we can use the
Pythagorean Theorem to find it:

We now know the lengths of all sides of the triangle , so we have:

You may have noticed the connections between the sine and cosine, secant and cosecant, and tangent and cotangent of the complementary
angles in Examples 1.5 and 1.7. Generalizing those examples gives us the following theorem:

If  and  are the complementary acute angles in a right triangle , then the following relations hold:

We say that the pairs of functions , , and  are .

So sine and cosine are cofunctions, secant and cosecant are cofunctions, and tangent and cotangent are cofunctions. That is how the
functions cosine, cosecant, and cotangent got the "co'' in their names. The Cofunction Theorem says that any trigonometric function of an
acute angle is equal to its cofunction of the complementary angle.

Write each of the following numbers as trigonometric functions of an angle less than .

Solution

 The complement of  is  and the cofunction of  is , so by the Cofunction Theorem we know that 
.

 The complement of  is  and the cofunction of  is , so .

 The complement of  is  and the cofunction of  is , so .

Figure 1.2.2 Two general right triangles (any )

The angles , , and  arise often in applications. We can use the Pythagorean Theorem to generalize the right triangles in Examples
1.6 and 1.7 and see what any  and  right triangles look like, as in Figure 1.2.2 above.

sin A = 2
3

sin A
opposite

hypotenuse
2 A 3

△ABC sin A = 2
3

A b

  +     =   ⇒   =  9  −  4  =  5 ⇒ b  =  22
b

2 32
b

2 5
–

√ (1.2.12)

△ABC

cos A = = tan A = =
adjacent

hypotenuse

5
–

√

3

opposite

adjacent

2

5
–

√
(1.2.13)

csc A = = sec A = = cot A = =
hypotenuse

opposite

3

2

hypotenuse

adjacent

3

5
–

√

adjacent

opposite

5
–

√

2
(1.2.14)

Theorem 1.2 Cofunction Theorem
A B △ABC

sin A  =   cos B sec A  =   csc B tan A  =   cot B (1.2.15)

sin B  =   cos A sec B  =   csc A tan B  =   cot A (1.2.16)

{ sin, cos } { sec, csc } { tan, cot } cofunctions

Example 1.9
: (a) sin ; (b) cos ; (c) tan45∘ 65∘ 78∘ 59∘

(a) 65∘ − =90∘ 65∘ 25∘ sin cos
sin = cos65∘ 25∘

(b) 78∘ − =90∘ 78∘ 12∘ cos sin cos = sin78∘ 12∘

(c) 59∘ − =90∘ 59∘ 31∘ tan cot tan = cot59∘ 31∘

a > 0

30∘ 45∘ 60∘

45 −45 −90 30 −60 −90
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Find the sine, cosine, and tangent of .

Solution

Since , place a  right triangle  with legs of length  and  on top of the hypotenuse of a 
 right triangle  whose hypotenuse has length , as in the figure on the right. From Figure 1.2.2(a) we know that

the length of each leg of  is the length of the hypotenuse divided by . So . Draw 

perpendicular to , so that  is a right triangle. Since  and , we see that  since it
is the sum of those two angles. Thus, we need to find the sine, cosine, and tangent of .

Notice that , since it is the complement of . And , since it is the complement of . Draw 
 perpendicular to , so that  is a right triangle. Then , since it is the difference of  and 

. Also,  since it is the complement of . The hypotenuse  of  has length  and 
 is a  right triangle, so we know that .

Now, we know that  and , so  and  are parallel. Likewise,  and  are both perpendicular to 
and hence  is parallel to . Thus,  is a rectangle, since  is a right angle. So  and 

. Hence,

Note: Taking reciprocals, we get , , and .

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free Documentation License,
Version 1.2.

Example 1.10
75∘

= +75∘ 45∘ 30∘ 30 −60 −90 △ADB 3
–

√ 1
45 −45 −90 △ABC 3

–
√

△ABC 2
–

√ AC =BC = =
3√

2√
3
2

−−
√ DE

¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

△ADE ∠BAC = 45∘ ∠DAB = 30∘ ∠DAE = 75∘

∠DAE

∠ADE = 15∘ ∠DAE ∠ADB = 60∘ ∠DAB

BF
¯ ¯¯̄¯̄¯̄

DE
¯ ¯¯̄¯̄¯̄

△DFB ∠BDF = 45∘ ∠ADB = 60∘

∠ADE = 15∘ ∠DBF = 45∘ ∠BDF BD
¯ ¯¯̄¯̄¯̄

△DFB 1

△DFB 45 −45 −90 DF = FB = 1
2√

⊥DE
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

⊥BC
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

FE
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

FB
¯ ¯¯̄¯̄¯̄

EC
¯ ¯¯̄¯̄¯̄

DE
¯ ¯¯̄¯̄¯̄

FB
¯ ¯¯̄¯̄¯̄

EC
¯ ¯¯̄¯̄¯̄

FBCE ∠BCE EC = FB = 1
2√

FE =BC = 3
2

−−
√

DE  =  DF   +  FE  =     +     =   and AE  =  AC   −  EC   =     −     =    .   Thus,1
2√

3
2

−−
√  + 13√

2√
3
2

−−
√ 1

2√

 − 13√

2√
(1.2.17)

sin = = =  ,   cos = = =  ,  and  tan = = =  .75∘ DE

AD

+13√

2√

2

+6√ 2√

4
75∘ AE

AD

−13√

2√

2

−6√ 2√

4
75∘ DE

AE

+13√

2√

−13√

2√

+6√ 2√

−6√ 2√
(1.2.18)

csc =75∘ 4
+6√ 2√

sec =75∘ 4
−6√ 2√

cot =75∘ −6√ 2√

+6√ 2√
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1.3: Applications and Solving Right Triangles
Throughout its early development, trigonometry was often used as a means of indirect measurement, e.g. determining large distances or lengths
by using measurements of angles and small, known distances. Today, trigonometry is widely used in physics, astronomy, engineering,
navigation, surveying, and various fields of mathematics and other disciplines. In this section we will see some of the ways in which
trigonometry can be applied. Your calculator should be in degree mode for these examples.

A person stands  ft away from a flagpole and measures an angle of elevation of  from his horizontal line of sight to the top of the
flagpole. Assume that the person's eyes are a vertical distance of 6 ft from the ground. What is the height of the flagpole?

Solution:

The picture on the right describes the situation. We see that the height of the flagpole is  ft, where

How did we know that ? By using a calculator. And since none of the numbers we were given had decimal places, we
rounded off the answer for  to the nearest integer. Thus, the height of the flagpole is .

A person standing  ft from the base of a mountain measures the angle of elevation from the ground to the top of the mountain to be 
. The person then walks  ft straight back and measures the angle of elevation to now be . How tall is the mountain?

Solution:

We will assume that the ground is flat and not inclined relative to the base of the mountain. Let  be the height of the mountain, and let 
be the distance from the base of the mountain to the point directly beneath the top of the mountain, as in the picture on the right. Then we
see that

, since they both equal . Use that equation to solve for :

Finally, substitute  into the first formula for  to get the height of the mountain:

Example 1.11
150 32∘

h+6

  =   tan ⇒ h  =  150 tan   =  150 (0.6249)  =  94 .
h

150
32∘ 32∘ (1.3.1)

tan = 0.624932∘

h h+6 = 94 +6 = 100 ft

Example 1.12
400

25∘ 500 20∘

h x

  =   tan
h

x+400
25∘

  =   tan
h

x+400 +500
20∘

⇒ h  =  (x+400) tan  ,  and25∘

⇒ h  =  (x+900) tan  ,  so20∘

(1.3.2)

(1.3.3)

(x+400) tan   =  (x+900) tan25∘ 20∘
h x

x tan   − x tan   =  900 tan   − 400 tan ⇒ x  =     =  1378 ft25∘ 20∘ 20∘ 25∘ 900 tan   − 400 tan20∘ 25∘

tan   −  tan25∘ 20∘ (1.3.4)

x h

h  =  (1378 +400) tan   =  1778 (0.4663)  =  25∘ 829 ft (1.3.5)

Example 1.13
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A blimp  ft above the ground measures an angle of depression of  from its horizontal line of sight to the base of a house on the
ground. Assuming the ground is flat, how far away along the ground is the house from the blimp?

Solution:

Let  be the distance along the ground from the blimp to the house, as in the picture to the right. Since the ground and the blimp's
horizontal line of sight are parallel, we know from elementary geometry that the angle of elevation  from the base of the house to the
blimp is equal to the angle of depression from the blimp to the base of the house, i.e. . Hence,

An observer at the top of a mountain  miles above sea level measures an angle of depression of  to the ocean horizon. Use this to
estimate the radius of the earth.

Figure 1.3.1

Solution:

We will assume that the earth is a sphere. Let  be the radius of the earth. Let the point  represent the top of the mountain, and let  be
the ocean horizon in the line of sight from , as in Figure 1.3.1. Let  be the center of the earth, and let  be a point on the horizontal
line of sight from  (i.e. on the line perpendicular to ). Let  be the angle .

Since  is  miles above sea level, we have . Also, . Now sincev , we have , so we see
that . We see that the line through  and  is a tangent line to the surface of the earth (considering the
surface as the circle of radius  through  as in the picture). So by Exercise 14 in Section 1.1,  and hence .
Since the angles in the triangle  add up to , we have . Thus,

so solving for  we get

Note: This answer is very close to the earth's actual (mean) radius of  miles.

As another application of trigonometry to astronomy, we will find the distance from the earth to the sun. Let  be the center of the earth,
let  be a point on the equator, and let  represent an object (e.g. a star) in space, as in the picture on the right. If the earth is positioned in
such a way that the angle , then we say that the angle  is the equatorial parallax of the object. The equatorial

4280 24∘

x

θ

θ = 24∘

  =   tan ⇒ x  =     =    .
4280

x
24∘ 4280

tan 24∘ 9613 ft (1.3.6)

Example 1.14
3 2.23∘

r A H

A O B

A OA
¯ ¯¯̄¯̄¯̄

θ ∠ AOH

A 3 OA = r+3 OH = r ⊥AB
¯ ¯¯̄¯̄¯̄

OA
¯ ¯¯̄¯̄¯̄

∠ OAB = 90∘

∠ OAH = − =90∘ 2.23∘ 87.77∘
A H

r H ⊥AH
¯ ¯¯̄¯̄¯̄

OH
¯ ¯¯̄¯̄ ¯̄

∠ OHA = 90∘

△OAH 180∘
θ = − − =180∘ 90∘ 87.77∘ 2.23∘

cos θ  =     =   ⇒   =   cos  ,
OH

OA

r

r+3

r

r+3
2.23∘ (1.3.7)

r

r  =  (r  +  3) cos 2.23∘ ⇒ r  −  r cos   =  3 cos2.23∘ 2.23∘

⇒ r  =  
3 cos 2.23∘

1  −  cos 2.23∘

⇒  .r  =  3958.3 miles

(1.3.8)

(1.3.9)

(1.3.10)

3956.6

Example 1.15
O

A B

∠ OAB = 90∘
α = ∠ OBA
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parallax of the sun has been observed to be approximately . Use this to estimate the distance from the center of the earth to
the sun.

Solution:

Let  be the position of the sun. We want to find the length of . We will use the actual radius of the earth, mentioned at the end of
Example 1.14, to get  miles. Since , we have

so the distance from the center of the earth to the sun is approximately 

Note: The earth's orbit around the sun is an ellipse, so the actual distance to the sun varies.

In the above example we used a very small angle ( ). A degree can be divided into smaller units: a minute is one-sixtieth of a degree,
and a second is one-sixtieth of a minute. The symbol for a minute is  and the symbol for a second is . For example, . And 

:

In Example 1.15 we used , which we mention only because some angle measurement devices do use minutes and
seconds.

An observer on earth measures an angle of  from one visible edge of the sun to the other (opposite) edge, as in the picture on the
right. Use this to estimate the radius of the sun.

Solution:

Let the point  be the earth and let  be the center of the sun. The observer's lines of sight to the visible edges of the sun are tangent lines
to the sun's surface at the points  and . Thus, . The radius of the sun equals . Clearly . So
since  (why?), the triangles  and  are similar. Thus, 

.

Now,  is the distance from the surface of the earth (where the observer stands) to the center of the sun. In Example 1.15 we found the
distance from the center of the earth to the sun to be  miles. Since we treated the sun in that example as a point, then we are
justified in treating that distance as the distance between the centers of the earth and sun. So 

 miles. Hence,

Note: This answer is close to the sun's actual (mean) radius of  miles.

α = 0.00244∘

B OB
¯ ¯¯̄¯̄¯̄

OA = 3956.6 ∠ OAB = 90∘

  =   sin α ⇒ OB  =     =     =  92908394 ,
OA

OB

OA

sin α

3956.6

sin 0.00244∘ (1.3.11)

 .93 million miles

0.00244∘

′ ′′ =4.5∘ 4∘ 30′

=4.505∘ 4∘ 30′ 18′′

  =  4  +     +    degrees  =  4∘ 30′ 18′′ 30

60

18

3600
4.505∘ (1.3.12)

α = ≈0.00244∘ 8.8′′

Example 1.16
32′ 4′′

E S

A B ∠ EAS = ∠ EBS = 90∘
AS AS = BS

EB = EA △EAS △EBS

∠ AES = ∠ BES = ∠ AEB = ( ) = = (16/60) +(2/3600) =1
2

1
2

32′ 4′′ 16′ 2′′ 0.26722∘

ES

92, 908, 394

ES = 92908394 − radius of earth = 92908394 −3956.6 = 92904437.4

sin (∠ AES)  =   ⇒ AS  =  ES sin   =  (92904437.4) sin   =    .
AS

ES
0.26722∘ 0.26722∘ 433, 293 miles (1.3.13)

432, 200
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You may have noticed that the solutions to the examples we have shown required at least one right triangle. In applied problems it is not
always obvious which right triangle to use, which is why these sorts of problems can be difficult. Often no right triangle will be immediately
evident, so you will have to create one. There is no general strategy for this, but remember that a right triangle requires a right angle, so look
for places where you can form perpendicular line segments. When the problem contains a circle, you can create right angles by using the
perpendicularity of the tangent line to the circle at a point with the line that joins that point to the center of the circle. We did exactly that in
Examples 1.14, 1.15, and 1.16.

The machine tool diagram on the right shows a symmetric V-block, in which one circular roller sits on top of a smaller circular roller. Each
roller touches both slanted sides of the V-block. Find the diameter  of the large roller, given the information in the diagram.

Solution:

The diameter  of the large roller is twice the radius , so we need to find . To do this, we will show that  is a right triangle,
then find the angle , and then find . The length  will then be simple to determine.

Since the slanted sides are tangent to each roller, . By symmetry, since the vertical line through the centers of
the rollers makes a  angle with each slanted side, we have . Hence, since  is a right triangle,  is the
complement of . So .

Since the horizontal line segment  is tangent to each roller, . Thus,  is a right triangle. And since 
, we know that  is a right triangle. Now,  (since they each equal the radius of the large roller), so by the

Pythagorean Theorem we have :

Thus,  and  are congruent triangles (which we denote by ), since their corresponding sides are
equal. Thus, their corresponding angles are equal. So in particular, . We know that . Thus,

Likewise, since  and ,  and  are congruent right triangles. Thus, . But
we know that , and we see from the diagram that . Thus,  and so . We now
have all we need to find :

Hence, the diameter of the large roller is ~.

A slider-crank mechanism is shown in Figure 1.3.2 below. As the piston moves downward the connecting rod rotates the crank in the
clockwise direction, as indicated.

Example 1.17

d

d OB OB △OBC

∠ BOC BC OB

∠ ODA = ∠ PEC = 90∘

37∘ ∠ OAD = 37∘
△ODA ∠ DOA

∠ OAD ∠ DOA = 53∘

BC
¯ ¯¯̄¯̄¯̄

∠ OBC = ∠ PBC = 90∘
△OBC

∠ ODA = 90∘
△ODC OB = OD

BC = DC

B   =  O   −  O   =  O   −  O   =  D ⇒ BC   =  DCC
2

C
2

B
2

C
2

D
2

C
2 (1.3.14)

△OBC △ODC △OBC ≅△ODC

∠ BOC = ∠ DOC ∠ DOB = ∠ DOA = 53∘

  =  ∠ DOB  =  ∠ BOC   +  ∠ DOC = ∠ BOC   +  ∠ BOC   =  2 ∠ BOC ⇒ ∠ BOC   =    .53∘ 26.5∘ (1.3.15)

BP = EP ∠ PBC = ∠ PEC = 90∘
△BPC △EPC BC = EC

BC = DC EC +DC = 1.38 BC +BC = 1.38 BC = 0.69
OB

  =   tan ∠ BOC ⇒ OB  =     =     =  1.384
BC

OB

BC

tan ∠ BOC

0.69

tan 26.5∘ (1.3.16)

d = 2 ×OB = 2 (1.384) = 2.768

Example 1.18
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Figure 1.3.2 Slider-crank mechanism

The point  is the center of the connecting rod's wrist pin and only moves vertically. The point  is the center of the crank pin and moves
around a circle of radius  centered at the point , which is directly below  and does not move. As the crank rotates it makes an angle 
with the line . The instantaneous center of rotation of the connecting rod at a given time is the point  where the horizontal line
through  intersects the extended line through  and . From Figure 1.3.2 we see that , and we let , ,
and . In the exercises you will show that for ,

For some problems it may help to remember that when a right triangle has a hypotenuse of length  and an acute angle , as in the picture
below, the adjacent side will have length  and the opposite side will have length . You can think of those lengths as the
horizontal and vertical ``components'' of the hypotenuse.

Notice in the above right triangle that we were given two pieces of information: one of the acute angles and the length of the hypotenuse. From
this we determined the lengths of the other two sides, and the other acute angle is just the complement of the known acute angle. In general, a
triangle has six parts: three sides and three angles. Solving a triangle means finding the unknown parts based on the known parts. In the case
of a right triangle, one part is always known: one of the angles is .

Solve the right triangle in Figure 1.3.3 using the given information:

A B

r O A θ

OA
¯ ¯¯̄¯̄¯̄

C

A O B ∠ OAC = 90∘
a = AC b = AB

c = BC < θ <0∘ 90∘

c  =     and  a  =  r sin θ  +     tan θ .
  −   (sin θb2 r2 )2− −−−−−−−−−−−−√

cos θ
  −   (sin θb

2
r

2 )2
− −−−−−−−−−−−−

√ (1.3.17)

r θ

r cos θ r sin θ

90∘

Example 1.19
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Figure 1.3.3

(a) 
Solution: The unknown parts are , , and . Solving yields:

(b) 
Solution: The unknown parts are , , and . Solving yields:

(c) 
Solution: The unknown parts are , , and . By the Pythagorean Theorem,

Now, . So how do we find ? There should be a key labeled  on your calculator, which works like this:
give it a number  and it will tell you the angle  such that . In our case, we want the angle  such that :

This tells us that , approximately. Thus .

Note: The  and  keys work similarly for sine and cosine, respectively. These keys use the inverse trigonometric functions,
which we will discuss in Chapter 5.

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free Documentation License,
Version 1.2.

c = 10, A = 22◦

a b B

a 

b 

B 

=  c sin A 

=  c cos A 

=     −  A 90∘

=  10 sin  22∘

=  10 cos  22∘

=     −   90∘ 22∘

=  3.75

=  9.27

=  68∘

(1.3.18)

(1.3.19)

(1.3.20)

b = 8, A = 40◦

a c B

 
a

b

 
b

c

=   tan A

=   cos A

⇒ a 

⇒ c 

=  b tan A  =  8 tan   =  6.7140∘

=     =     =  10.44
b

cos A

8

cos 40∘

(1.3.21)

(1.3.22)

a = 3, b = 4
c A B

c  =     =     =     =  5 .  +  a
2

b
2− −−−−−−√   +  32 42− −−−−−−√ 25

−−
√ (1.3.23)

tan A = = = 0.75a

b

3
4

A tan−1

x θ tan θ = x A tan A = 0.75

Enter: 0.75 Press: Answer: 36.86989765tan−1 (1.3.24)

A = 36.87∘
B = −A = − =90∘ 90∘ 36.87∘ 53.13∘

 sin−1  cos−1
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1.4: Trigonometric Functions of Any Angle

Figure 1.4.1 Definition of a general angle

Figure 1.4.2 Angle greater than 

Figure 1.4.3 -coordinate plane

Now let  be any angle. We say that  is in standard position if its initial side is the positive -axis and its vertex is the origin
. Pick any point  on the terminal side of  a distance  from the origin (see Figure 1.4.3(c)). (Note that 

. Why?) We then define the trigonometric functions of  as follows:

As in the acute case, by the use of similar triangles these definitions are well-defined (i.e. they do not depend on which point 
 we choose on the terminal side of ). Also, notice that  and , since  and  in the

above definitions.

360◦

xy

θ θ x

(0, 0) (x, y) θ r > 0
r = +x2 y2

− −−−−−
√ θ

sin θ  =   cos θ  =   tan θ  =  
y

r

x

r

y

x
(1.4.1)

csc θ  =   sec θ  =   cot θ  =  
r

y

r

x

x

y
(1.4.2)

(x, y) θ | sin θ| ≤ 1 | cos θ| ≤ 1 |y| ≤ r |x| ≤ r
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Notice that in the case of an acute angle these definitions are equivalent to our earlier definitions in terms of right triangles:
draw a right triangle with angle  such that , , and . For example, this
would give us  and , just as before (see Figure 1.4.4(a)).

Figure 1.4.4

Figure 1.4.5 Signs of the trigonometric functions by quadrant

θ x = adjacent side y = opposite side r = hypotenuse

sin θ = =
y

r

opposite

hypotenuse
cos θ = =x

r

adjacent

hypotenuse

We know . By Example 1.7 in Section 1.2, we see that we can use the point 
 on the terminal side of the angle  in QII, since we saw in that example that a basic

right triangle with a  angle has adjacent side of length , opposite side of length , and
hypotenuse of length , as in the figure on the right. Drawing that triangle in QII so that the
hypotenuse is on the terminal side of  makes , , and . Hence:

= −120∘ 180∘ 60∘

(−1, )3
–

√ 120∘

60∘ 1 3
–√

2
120∘ r = 2 x = −1 y = 3

–√

sin = = cos = = tan = = = −120∘ y

r

3
–

√

2
120∘ x

r

−1

2
120∘ y

x

3
–

√

−1
3–√

csc = = sec = = = −2 cot = =120∘ r

y

2

3
–

√
120∘ r

x

2

−1
120∘ x

y

−1

3
–

√

We know that . By Example 1.6 in Section 1.2, we see that we can use the point 
 on the terminal side of the angle  in QIII, since we saw in that example that a basic

right triangle with a  angle has adjacent side of length , opposite side of length , and
hypotenuse of length , as in the figure on the right. Drawing that triangle in QIII so that the
hypotenuse is on the terminal side of  makes , , and . Hence:

= +225∘ 180∘ 45∘

(−1, −1) 225∘

45∘ 1 1
2
–

√
225∘ r = 2

–√ x = −1 y = −1
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Figure 1.4.6
Solution:

These angles are different from the angles we have considered so far, in that the terminal sides lie along either the -axis
or the -axis. So unlike the previous examples, we do not have any right triangles to draw. However, the values of the
trigonometric functions are easy to calculate by picking the simplest points on their terminal sides and then using the
definitions in formulas Equation  and Equation .

For instance, for the angle  use the point  on its terminal side (the positive -axis), as in Figure 1.4.6. You could
think of the line segment from the origin to the point  as sort of a degenerate right triangle whose height is  and
whose hypotenuse and base have the same length . Regardless, in the formulas we would use , , and .
Hence:

Note that  and  are undefined, since division by  is not allowed.

Similarly, from Figure 1.4.6 we see that for  the terminal side is the positive -axis, so use the point . Again, you
could think of the line segment from the origin to  as a degenerate right triangle whose base has length  and whose
height equals the length of the hypotenuse. We have , , and , and hence:

sin = = cos = = tan = = = 1225∘ y

r

−1

2
–

√
225∘ x

r

−1

2
–

√
225∘ y

x

−1

−1

csc = = − sec = = − cot = = = 1225∘ r

y
2
–

√ 225∘ r

x
2
–

√ 225∘ x

y

−1

−1

We know that . By Example 1.7 in Section 1.2, we see that we can use the point 
 on the terminal side of the angle  in QIV, since we saw in that example that a basic

right triangle with a  angle has adjacent side of length , opposite side of length , and
hypotenuse of length , as in the figure on the right. Drawing that triangle in QIV so that the
hypotenuse is on the terminal side of  makes , , and . Hence:

= −330∘ 360∘ 30∘

( , −1)3
–√ 225∘

30∘ 3
–

√ 1
2

330∘ r = 2 x = 3
–

√ y = −1

sin = = cos = = tan = =330∘ y

r

−1

2
330∘ x

r

3
–

√

2
330∘ y

x

−1

3
–

√

csc = = −2 sec = = cot = = −330∘ r

y
330∘ r

x

2

3
–

√
330∘ x

y
3
–

√

x

y

1.4.1 1.4.2

0∘ (1, 0) x

(1, 0) 0
1 r = 1 x = 1 y = 0

sin = = = 0 cos = = = 1 tan = = = 00∘ y

r

0

1
0∘ x

r

1

1
0∘ y

x

0

1

csc = = = undefined sec = = = 1 cot = = = undefined0∘ r

y

1

0
0∘ r

x

1

1
0∘ x

y

1

0

csc 0∘ cot 0∘ 0

90∘ y (0, 1)
(0, 1) 0

r = 1 x = 0 y = 1

sin = = = 1 cos = = = 0 tan = = = undefined90∘ y

r

1

1
90∘ x

r

0

1
90∘ y

x

1

0

csc = = = 1 sec = = = undefined cot = = = 090∘ r

y

1

1
90∘ r

x

1

0
90∘ x

y

0

1

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3247?pdf


Michael Corral 3/8/2021 1.4.4
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3247

Likewise, for  use the point  so that , , and . Hence:

Lastly, for  use the point  so that , , and . Hence:

The following table summarizes the values of the trigonometric functions of angles between  and  which are integer
multiples of  or :

Table 1.3 Table of trigonometric function values

Since  represents one full revolution, the trigonometric function values repeat every . For example, 
, , , , etc. In general, if two angles

differ by an integer multiple of  then each trigonometric function will have equal values at both angles. Angles such as
these, which have the same initial and terminal sides, are called coterminal.

180∘ (−1, 0) r = 1 x = −1 y = 0

sin = = = 0 cos = = = −1 tan = = = 0180∘ y

r

0

1
180∘ x

r

−1

1
180∘ y

x

0

−1

csc = = = undefined sec = = = −1180∘ r

y

1

0
180∘ r

x

1

−1

cot = = = undefined180∘ x

y

−1

0

270∘ (0, −1) r = 1 x = 0 y = −1

sin = = = −1 cos = = = 0 tan = = = undefined270∘ y

r

−1

1
270∘ x

r

0

1
270∘ y

x

−1

0

csc = = = −1 sec = = = undefined cot = = = 0270∘ r

y

1

−1
270∘ r

x

1

0
270∘ x

y

0

−1

0∘ 360∘

30∘ 45∘

360∘ 360∘

sin = sin360∘ 0∘ cos = cos390∘ 30∘ tan = tan540∘ 180∘ sin (− ) = sin45∘ 315∘

360∘
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In Examples 1.20-1.22, we saw how the values of trigonometric functions of an angle  larger than  were found by using a
certain acute angle as part of a right triangle. That acute angle has a special name: if  is a nonacute angle then we say that the
reference angle for  is the acute angle formed by the terminal side of  and either the positive or negative -axis. So in
Example 1.20, we see that  is the reference angle for the nonacute angle ; in Example 1.21,  is the reference
angle for ; and in Example 1.22,  is the reference angle for .

Let .

Figure 1.4.7

a. Which angle between  and  has the same terminal side (and hence the same trigonometric function values) as 
?

b. What is the reference angle for ?

Solution

(a) Since , then  has the same terminal side as , as in Figure 1.4.7.

(b)  and  have the same terminal side in QIII, so the reference angle for  is .

Figure 1.4.8 
When  is in QII, we see from Figure 1.4.8(a) that the point  is on the terminal side of , and so we have , 

, and . Thus,  and .

When  is in QIII, we see from Figure 1.4.8(b) that the point  is on the terminal side of , and so we have 
, , and . Thus,  and .

Thus, either  or .

Since reciprocals have the same sign,  and  have the same sign,  and  have the same sign, and  and
 have the same sign. So it suffices to remember the signs of , , and :

For an angle  in standard position and a point  on its terminal side:

a.  has the same sign as 
b.  has the same sign as 
c.  is positive when  and  have the same sign
d.  is negative when  and  have opposite signs

θ 90∘

θ

θ θ x

60∘ θ = 120∘ 45∘

θ = 225∘ 30∘ θ = 330∘

Example 1.24
θ = 928∘

0∘ 360∘

θ

θ

= 2 × +928∘ 360∘ 208∘ θ 208∘

928∘ 208∘ θ = 928∘ − =208∘ 180∘ 28∘

cos θ = − 4
5

θ (−4, 3) θ x = −4

y = 3 r = 5 sin θ = =
y

r

3
5

tan θ = =
y

x

3
−4

θ (−4, −3) θ

x = −4 y = −3 r = 5 sin θ = =
y

r

−3
5

tan θ = = =
y

x

−3
−4

3
4

sin θ =  and tan θ = −3
5

3
4

sin θ = −  and tan θ =3
5

3
4

csc θ sin θ sec θ cos θ cot θ

tan θ sin θ cos θ tan θ

θ (x, y)

sin θ y

cos θ x

tan θ x y

tan θ x y
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1.5: Rotations and Reflections of Angles
Now that we know how to deal with angles of any measure, we will take a look at how certain geometric operations can help
simplify the use of trigonometric functions of any angle, and how some basic relations between those functions can be made.
The two operations on which we will concentrate in this section are rotation and reflection.

To rotate an angle means to rotate its terminal side around the origin when the angle is in standard position. For example,
suppose we rotate an angle  around the origin by  in the counterclockwise direction. In Figure 1.5.1 we see an angle  in
QI which is rotated by , resulting in the angle  in QII. Notice that the complement of  in the right triangle in QI is
the same as the supplement of the angle  in QII, since the sum of , its complement, and  equals . This forces
the other angle of the right triangle in QII to be .

Figure 1.5.1 Rotation of an angle 

Thus, the right triangle in QI is similar to the right triangle in QII, since the triangles have the same angles. The rotation of 
by  does not change the length  of its terminal side, so the hypotenuses of the similar right triangles are equal, and hence
by similarity the remaining corresponding sides are also equal. Using Figure 1.5.1 to match up those corresponding sides
shows that the point  is on the terminal side of  when  is on the terminal side of . Hence, by definition,

Though we showed this for  in QI, it is easy (see Exercise 4) to use similar arguments for the other quadrants. In general, the
following relations hold for all angles :

Recall that any nonvertical line in the -coordinate plane can be written as , where  is the slope of the line
(defined as  ) and  is the -intercept}, i.e. where the line crosses the -axis (see Figure 1.5.2(a)). We will show
that the slopes of perpendicular lines are negative reciprocals. That is, if  and  are
nonvertical and nonhorizontal perpendicular lines, then  (see Figure 1.5.2(b)).

θ 90∘ θ

90∘ θ +90∘ θ

θ +90∘ θ 90∘ 180∘

θ

θ by 90◦

θ

90∘ r

(−y, x) θ +90∘ (x, y) θ

sin (θ + )  =     =   cos θ ,    cos (θ + )  =     =   −sin θ ,    tan (θ + )  =     =   −cot θ .90∘ x

r
90∘ −y

r
90∘ x

−y

θ

θ

sin (θ + )  =   cos θ90∘ (1.5.1)

cos (θ + )  =   −sin θ90∘ (1.5.2)

tan (θ + )  =   −cot θ90∘ (1.5.3)

Example 1.26
xy y = mx +b m

m = rise
run

b y y

y = x +m1 b1 y = x +m2 b2

= −m2
1

m1
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Figure 1.5.2

First, suppose that a line  has nonzero slope. The line crosses the -axis somewhere, so let  be the angle that
the positive -axis makes with the part of the line above the -axis, as in Figure 1.5.3. For  we see that  is acute
and .

Figure 1.5.3

If , then we see that  is obtuse and the rise is negative. Since the run is always positive, our definition of 
from Section 1.4 means that  (just imagine in Figure 1.5.3(b) the entire line being shifted
horizontally to go through the origin, so that  is unchanged and the point  is on the terminal side of ).
Hence:

For a line  with , the slope is given by , where  is
the angle formed by the positive -axis and the part of the line above the -axis.}

Now, in Figure 1.5.2(b) we see that if two lines  and  are perpendicular then rotating one
line counterclockwise by  around the point of intersection gives us the second line. So if  is the angle that the line 

 makes with the positive -axis, then  is the angle that the line  makes with the
positive -axis. So by what we just showed,  and . But by formula Equation  we
know that . Hence, . 

Rotating an angle  by  in the clockwise direction results in the angle . We could use another geometric argument
to derive trigonometric relations involving , but it is easier to use a simple trick: since Equations -  hold for
any angle , just replace  by  in each formula. Since , this gives us:

We now consider rotating an angle  by . Notice from Figure 1.5.4 that the angles  have the same terminal side,
and are in the quadrant opposite .

y = mx +b x θ

x x m > 0 θ

tan θ = = mrise
run

m < 0 θ tan θ

tan θ = = = m
−rise
−run

rise
run

θ (−run, −rise) θ

y = mx + b m ≠ 0 m = tan θ θ

x x

y = x +m1 b1 y = x +m2 b2

90∘ θ

y = x +m1 b1 x θ +90∘ y = x +m2 b2

x = tan θm1 = tan (θ + )m2 90∘ 1.5.3

tan (θ + ) = −cot θ90∘ = −cot θ = − = −m2
1

tan θ

1
m1

QED

θ 90∘ θ −90∘

θ −90∘ 1.5.1 1.5.3

θ θ θ −90∘ (θ − ) + = θ90∘ 90∘

sin (θ − )  =   −cos θ90∘ (1.5.4)

cos (θ − )  =   sin θ90∘ (1.5.5)

tan (θ − )  =   −cot θ90∘ (1.5.6)

θ 180∘ θ ±180∘

θ
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Figure 1.5.4 Rotation of 

Since  is on the terminal side of  when  is on the terminal side of , we get the following relations,
which hold for all :

A reflection is simply the mirror image of an object. For example, in Figure 1.5.5 the original object is in QI, its reflection
around the -axis is in QII, and its reflection around the -axis is in QIV. Notice that if we first reflect the object in QI around
the -axis and then follow that with a reflection around the -axis, we get an image in QIII. That image is the reflection
around the origin of the original object, and it is equivalent to a rotation of  around the origin. Notice also that a reflection
around the -axis is equivalent to a reflection around the -axis followed by a rotation of  around the origin.

Figure 1.5.5

Applying this to angles, we see that the reflection of an angle  around the -axis is the angle , as in Figure 1.5.6.

Figure 1.5.6 Reflection of 

So we see that reflecting a point  around the -axis just replaces  by . Hence:

Notice that the cosine function does not change in Equation  because it depends on , and not on , for a point  on
the terminal side of .

θ by  ± 180◦

(−x, −y) θ ±180∘ (x, y) θ

θ

sin (θ ± )  =   −sin θ180∘ (1.5.7)

cos (θ ± )  =   −cos θ180∘ (1.5.8)

tan (θ ± )  =   tan θ180∘ (1.5.9)

y x

y x

180∘

y x 180∘

θ x −θ

θ around the x-axis

(x, y) x y −y

sin (−θ)  =   −sin θ (1.5.10)

cos (−θ)  =   cos θ (1.5.11)

tan (−θ)  =   −tan θ (1.5.12)

1.5.11 x y (x, y)

θ
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In general, a function  is an even function if  for all , and it is called an odd function if 
for all . Thus, the cosine function is even, while the sine and tangent functions are odd.

Replacing  by  in Equations - , then using Equations - , gives:

Note that Equations -  extend the Cofunction Theorem from Section 1.2 to all , not just acute angles. Similarly,
Equations -  and -  give:

Notice that reflection around the -axis is equivalent to reflection around the -axis ( ) followed by a rotation of  (
), as in Figure 1.5.7.

Figure 1.5.7 Reflection of  around the -axis = 

It may seem that these geometrical operations and formulas are not necessary for evaluating the trigonometric functions, since
we could just use a calculator. However, there are two reasons for why they are useful. First, the formulas work for any angles,
so they are often used to prove general formulas in mathematics and other fields, as we will see later in the text. Second, they
can help in determining which angles have a given trigonometric function value.

Find all angles  such that .

Solution

Using the  button on a calculator with  as the input, we get , which is not between  and .
Since  is in QIV, its reflection  around the -axis will be in QIII and have the same sine value. But 

 (see Figure 1.5.8). Also, we know that  and  have the
same trigonometric function values. So since angles in QI and QII have positive sine values, we see that the only angles
between  and  with a sine of  are .

f(x) f(−x) = f(x) x f(−x) = −f(x)

x

θ −θ 1.5.1 1.5.3 1.5.10 1.5.12

sin ( −θ)  =   cos θ90∘ (1.5.13)

cos ( −θ)  =   sin θ90∘ (1.5.14)

tan ( −θ)  =   cot θ90∘ (1.5.15)

1.5.13 1.5.15 θ

1.5.7 1.5.9 1.5.10 1.5.12

sin ( −θ)  =   sin θ180∘ (1.5.16)

cos ( −θ)  =   −cos θ180∘ (1.5.17)

tan ( −θ)  =   −tan θ180∘ (1.5.18)

y x θ ↦ −θ 180∘

−θ ↦ −θ + = −θ180∘ 180∘

θ y − θ180◦

Example 1.27
≤ θ <0∘ 360∘ sin θ = −0.682

sin−1 −0.682 θ = −43∘ 0∘ 360∘

θ = −43∘ −θ180∘ y

−θ = −(− ) =180∘ 180∘ 43∘ 223∘ −43∘ − + =43∘ 360∘ 317∘

0∘ 360∘ −0.682  θ =  and 223∘ 317∘
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Figure 1.5.8 Reflection around the -axis: 
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1.E: Right Triangle Trigonometry Angles (Exercises)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for
college students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is
taken than usual. Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

1.1 Exercises
For Exercises 1-4, find the numeric value of the indicated angle(s) for the triangle .

1.1.1 Find  if  and .

1.1.2 Find  if  and .

1.1.3 Find  and  if , , and .

1.1.4 Find , , and  if  and .

For Exercises 5-8, find the numeric value of the indicated angle(s) for the right triangle , with  being the right angle.

1.1.5 Find  if .

1.1.6 Find  and  if  and .

1.1.7 Find  and  if  and .

1.1.8 Find  and  if  and .

1.1.9 A car goes 24 miles due north then 7 miles due east. What is the straight distance between the car's starting point and end
point?

1.1.10 One end of a rope is attached to the top of a pole 100 ft high. If the rope is 150 ft long, what is the maximum distance
along the ground from the base of the pole to where the other end can be attached? You may assume that the pole is
perpendicular to the ground.

1.1.11 Prove that the hypotenuse is the longest side in every right triangle. (Hint: Is ?)

1.1.12 Can a right triangle have sides with lengths 2, 5, and 6? Explain your answer. 

1.1.13 If the lengths , , and  of the sides of a right triangle are positive integers, with , then they form what is
called a Pythagorean triple. The triple is normally written as ( , , ). For example, (3,4,5) and (5,12,13) are well-known
Pythagorean triples.
(a) Show that (6,8,10) is a Pythagorean triple.
(b) Show that if ( , , ) is a Pythagorean triple then so is ( , , ) for any integer . How would you interpret this
geometrically?
(c) Show that ( , , ) is a Pythagorean triple for all integers .
(d) The triple in part(c) is known as Euclid's formula for generating Pythagorean triples. Write down the first ten Pythagorean
triples generated by this formula, i.e. use:  and ;  and , ;  and , , ;  and ,

, , .

1.1.14 This exercise will describe how to draw a line through any point outside a circle such that the line intersects the circle at

△ABC

B A = 15∘ C = 50∘

C A = 110∘ B = 31∘

A B C = 24∘ A = α B = 2α

A B C A = β B = C = 4β

△ABC C

B A = 45∘

A B A = α B = 2α

A B A = ϕ B = ϕ2

A B A = θ B = 1/θ

+ >a2 b2 a2

a b c + =a2 b2 c2

a b c

a b c ka kb kc k > 0

2mn −m2 n2 +m2 n2 m > n > 0

m = 2 n = 1 m = 3 n = 1 2 m = 4 n = 1 2 3 m = 5 n = 1
2 3 4

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3329?pdf
https://math.libretexts.org/Bookshelves/Precalculus/Book%3A_Elementary_Trigonometry_(Corral)/01%3A_Right_Triangle_Trigonometry_Angles/1.0E%3A_1.E%3A_Right_Triangle_Trigonometry_Angles_(Exercises)


Michael Corral 2/17/2021 1.E.2
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3329

only one point. This is called a tangent line to the circle (see the picture on the left in Figure 1.1.6), a notion which we will use
throughout the text.

Figure 1.1.6

On a sheet of paper draw a circle of radius 1 inch, and call the center of that circle . Pick a point  which is  inches away
from . Draw the circle which has  as a diameter, as in the picture on the right in Figure 1.1.6. Let  be one of the points
where this circle intersects the first circle. Draw the line through  and . In general the tangent line through a point on a
circle is perpendicular to the line joining that point to the center of the circle (why?). Use this fact to explain why the line you
drew is the tangent line through  and to calculate the length of . Does it match the physical measurement of ?

1.1.15 Suppose that  is a triangle with side  a diameter of a circle with center , as in the picture on the right, and
suppose that the vertex  lies on the circle. Now imagine that you rotate the circle  around its center, so that  is
in a new position, as indicated by the dashed lines in the picture. Explain how this picture proves Thales' Theorem.

1.2 Exercises
For Exercises 1-10, find the values of all six trigonometric functions of\\angles  and  in the right triangle  in
Figure 1.2.3.

Figure 1.2.3

1.2.1 , , 

1.2.2 , , 

1.2.3 , , 

1.2.4 , , 

1.2.5 , , 

O P 2.5

O OP
¯ ¯¯̄¯̄¯̄

A

P A

A PA
¯ ¯¯̄¯̄¯̄

PA
¯ ¯¯̄¯̄¯̄

△ABC AB
¯ ¯¯̄¯̄¯̄

O

C 180∘
△ABC

A B △ABC

a = 5 b = 12 c = 13

a = 8 b = 15 c = 17

a = 7 b = 24 c = 25

a = 20 b = 21 c = 29

a = 9 b = 40 c = 41
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1.2.6 , , 

1.2.7 , 

1.2.8 , 

1.2.9 , 

1.2.10 , 

For Exercises 11-18, find the values of the other five trigonometric functions of the acute angle  given the indicated value of
one of the functions.

1.2.11 

1.2.12 

1.2.13 

1.2.14 

1.2.15 

1.2.16 

1.2.17 

1.2.18 

For Exercises 19-23, write the given number as a trigonometric function of an acute angle less than .

1.2.19 

1.2.20 

1.2.21 

1.2.22 

1.2.23 

For Exercises 24-28, write the given number as a trigonometric function of an acute angle greater than .

1.2.24 

1.2.25 

1.2.26 

1.2.27 

a = 1 b = 2 c = 5
–

√

a = 1 b = 3

a = 2 b = 5

a = 5 c = 6

b = 7 c = 8

A

sin A = 3
4

cos A = 2
3

cos A = 2
10√

sin A = 2
4

tan A = 5
9

tan A = 3

sec A = 7
3

csc A = 3

45∘

sin 87∘

sin 53∘

cos 46∘

tan 66∘

sec 77∘

45∘

sin 1∘

cos 13∘

tan 26∘

cot 10∘
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1.2.28 

1.2.29 In Example 1.7 we found the values of all six trigonometric functions of  and .

(a) Does ?
(b) Does ?
(c) Does ?
(d) Does ?

1.2.30 For an acute angle , can  be larger than ? Explain your answer.

1.2.31 For an acute angle , can  be larger than ? Explain your answer.

1.2.32 For an acute angle , can  be larger than ? Explain your answer.

1.2.33 If  and  are acute angles and , explain why .

1.2.34 If  and  are acute angles and , explain why .

1.2.35 Prove the Cofunction Theorem (Theorem 1.2). (Hint: Draw a right triangle and label the angles and sides.)

1.2.36 Use Example 1.10 to find all six trigonometric functions of .

1.2.37 In Figure 1.2.4,  is a diameter of a circle with a radius of  cm and center ,  is a right triangle, and 
has length  cm.

Figure 1.2.4

(a) Find . (Hint: Use Thales' Theorem.)
(b) Find the length of .
(c) Find the length of .
(d) Figure 1.2.4 is drawn to scale. Use a protractor to measure the angle , then use your calculator to find\\the sine of that
angle. Is the calculator result close to your answer from part(a)? Note: Make sure that your calculator is in degree mode.

1.2.38 In Exercise 37, verify that the area of  equals . Why does this make sense?

1.2.39 In Exercise 37, verify that the area of  equals .

1.2.40 In Exercise 37, verify that the area of  equals .

1.3 Exercises

csc 43∘

60∘ 30∘

sin   +   sin   =   sin30∘ 30∘ 60∘

cos   +   cos   =   cos30∘ 30∘ 60∘

tan   +  tan   =   tan30∘ 30∘ 60∘

2 sin cos   =   sin30∘ 30∘ 60∘

A sin A 1

A cos A 1

A sin A tan A

A B A < B sin A < sin B

A B A < B cos A > cos B

15∘

CB
¯ ¯¯̄¯̄¯̄

2 O △ABC CD
¯ ¯¯̄¯̄¯̄

3
–

√

sin A

AC
¯ ¯¯̄¯̄¯̄

AD
¯ ¯¯̄¯̄¯̄

A

△ABC AB ⋅CD1
2

△ABC AB ⋅AC sin A1
2

△ABC (BC cot A1
2

)2

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3329?pdf


Michael Corral 2/17/2021 1.E.5
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3329

1.3.1 From a position  ft above the ground, an observer in a building measures angles of depression of  and  to the
top and bottom, respectively, of a smaller building, as in the picture on the right. Use this to find the height  of the smaller
building.

1.3.2 Generalize Example 1.12: A person standing  ft from the base of a mountain measures an angle of elevation  from the
ground to the top of the mountain. The person then walks  ft straight back and measures an angle of elevation  to the top of
the mountain, as in the picture on the right. Assuming the ground is level, find a formula for the height  of the mountain in
terms of , , , and .

1.3.3 As the angle of elevation from the top of a tower to the sun decreases from  to  during the day, the length of the
shadow of the tower increases by  ft along the ground. Assuming the ground is level, find the height of the tower.

1.3.4 Two banks of a river are parallel, and the distance between two points  and  along one bank is  ft. For a point 
on the opposite bank,  and , as in the picture on the right. What is the width  of the river?
(Hint: Divide  into two pieces.)

1.3.5 A tower on one side of a river is directly east and north of points  and , respectively, on the other side of the river.
The top of the tower has angles of elevation  and  from  and , respectively, as in the picture on the right. Let  be the
distance between  and . Assuming that both sides of the river are at the same elevation, show that the height  of the tower
is

150 12∘ 34∘

h

a α

b β

h

a b α β

64∘ 49∘

92

A B 500 C

∠ BAC = 56∘ ∠ ABC = 41∘ w

AB
¯ ¯¯̄¯̄¯̄

A B

α β A B d

A B h

h  =    .
d

(cot α   +  (cot β)2 )2− −−−−−−−−−−−−−−−
√
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1.3.6 The equatorial parallax of the moon has been observed to be approximately . Taking the radius of the earth to be 
 miles, estimate the distance from the center of

the earth to the moon. (Hint: See Example 1.15.)

1.3.7 An observer on earth measures an angle of  from one visible edge of the moon to the other (opposite) edge. Use
this to estimate the radius of the moon. (Hint: Use Exercise
6 and see Example 1.16.)

1.3.8 A ball bearing sits between two metal grooves, with the top groove having an angle of  and the bottom groove
having an angle of , as in the picture on the right. What must the diameter of the ball bearing be for the distance between
the vertexes of the grooves to be half an inch? You may assume that the top vertex is directly above the bottom vertex.

1.3.9 The machine tool diagram on the right shows a symmetric worm thread, in which a circular roller of diameter  inches
sits. Find the amount  that the top of the roller rises above the top of the thread, given the information in the diagram. (Hint:
Extend the slanted sides of the thread until they meet at a point.)

57′

3956.6

31′ 7′′

120∘

90∘

1.5
d
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1.3.10 Repeat Exercise 9 using  inches as the distance across the top of the worm thread.

1.3.11 In Exercise 9, what would the distance across the top of the worm thread have to be to make  equal to  inches?

1.3.12 For  in the slider-crank mechanism in Example 1.18, show that

(Hint: In Figure 1.3.2 draw line segments from  perpendicular to  and .)

1.3.13 The machine tool diagram on the right shows a symmetric die punch. In this view, the rounded tip is part of a circle of
radius , and the slanted sides are tangent to that circle and form an angle of . The top and bottom sides of the die punch
are horizontal. Use the
information in the diagram to find the radius .

1.3.14 In the figure on the right,  and . Use this to find , , , , , and  in terms of 
and .(Hint: What is the angle ?)

For Exercises 15-23, solve the right triangle in Figure 1.3.4 using the given information.

Figure 1.3.4

1.3.15 , 

1.3.16 , 

1.3.17 , 

1.3.18 , 

1.8

d 0

< θ <0∘ 90∘

c  =     and  a  =  r sin θ  +     tan θ .
  −   (sin θb2 r2 )2− −−−−−−−−−−−−

√

cos θ
  −   (sin θb2 r2 )2

− −−−−−−−−−−−−
√

B OA
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

r 54∘

r

∠ BAC = θ BC = a AB AC AD DC CE DE θ

a ∠ ACD

a = 5 b = 12

c = 6 B = 35∘

b = 2 A = 8∘

a = 2 c = 7
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1.3.19 , 

1.3.20 , 

1.3.21 , 

1.3.22 , 

1.3.23 , 

1.3.24 In Example 1.10 in Section 1.2, we found the exact values of all six trigonometric functions of . For example, we

showed that . So since  by the Cofunction Theorem, this means that 

. We will now describe another method for finding the exact values of the trigonometric functions of .

In fact, it can be used to find the exact values for the trigonometric functions of  when those for  are known, for any 
. The method is illustrated in Figure 1.3.5 and is described below.

Figure 1.3.5

Draw a semicircle of radius  centered at a point  on a horizontal line. Let  be the point on the semicircle such that 
makes an angle of  with the horizontal line, as in Figure 1.3.5. Draw a line straight down from  to the horizontal line at
the point . Now create a second semicircle as follows: Let  be the left endpoint of the first semicircle, then draw a new
semicircle centered at  with radius equal to . Then create a third semicircle in the same way: Let  be the left endpoint
of the second semicircle, then draw a new semicircle centered at  with radius equal to .

This procedure can be continued indefinitely to create more semicircles. In general, it can be shown that the line segment from
the center of the new semicircle to  makes an angle with the horizontal line equal to half the angle from the previous
semicircle's center to .

(a) Explain why . (Hint: What is the supplement of ?)
(b) Explain why  and .
(c) Use Figure 1.3.5 to find the exact values of , , and . (Hint: To start, you will need to use 

 and  to find the exact lengths of  and .)
(d) Use Figure 1.3.5 to calculate the exact value of .
(e) Use the same method but with an initial angle of  to find the exact values of , , and 

.

1.3.25 A manufacturer needs to place ten identical ball bearings against the inner side of a circular container such that each
ball bearing touches two other ball bearings, as in the picture on the right. The (inner) radius of the container is  cm.

a = 3 A = 26∘

b = 1 c = 2

b = 3 B = 26∘

a = 2 B = 8∘

c = 2 A = 45∘

75∘

cot =75∘ −6√ 2√

+6√ 2√
tan = cot15∘ 75∘

tan =15∘ −6√ 2√

+6√ 2√
15∘

θ
2

θ

< θ <0∘ 90∘

1 O P OP
¯ ¯¯̄¯̄¯̄

60∘ P

Q A

A AP B

B BP

P

P

∠ PAQ = 30∘ 60∘

∠ PBQ = 15∘ ∠ PCQ = 7.5∘

sin 15∘ cos 15∘ tan 15∘

∠ POQ = 60∘ OP = 1 PQ
¯ ¯¯̄¯̄¯̄

OQ
¯ ¯¯̄¯̄¯̄

tan 7.5∘

∠ POQ = 45∘ sin 22.5∘ cos 22.5∘

tan 22.5∘

4
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(a) Find the common radius  of the ball bearings.
(b) The manufacturer needs to place a circular ring\\inside the container. What is the largest possible (outer) radius of the ring
such that it is not on top\\of the ball bearings and its base is level with the\\base of the container?

1.3.26 A circle of radius  is inscribed inside a polygon with eight sides of equal length, called a regular octagon. That is,
each of the eight sides is tangent to the circle, as in the picture on the right.

(a) Calculate the area of the octagon.
(b) If you were to increase the number of sides of the\\polygon, would the area inside it increase or decrease? What number
would the area approach, if any? Explain.
(c) Inscribe a regular octagon inside the same circle. That is, draw a regular octagon such that each of its eight vertexes
touches the circle. Calculate the area of this octagon.

1.3.27 The picture on the right shows a cube whose sides are of length .

(a) Find the length of the diagonal line segment .
(b) Find the angle  that  makes with the base of the cube.

1.3.28 In Figure 1.3.6, suppose that , , and  are known. Show that:

r

1

a > 0

AB
¯ ¯¯̄¯̄¯̄

θ AB
¯ ¯¯̄¯̄¯̄

α β AD
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Figure 1.3.6

(a) 

(b) 

(c) 

(Hint: What is the measure of the angle ?)

1.3.29 Persons A and B are at the beach, their eyes are  ft and  ft, respectively, above sea level. How many miles farther out
is Person B's horizon than Person A's? (Note:  mile =  ft)

1.4 Exercises
For Exercises 1-10, state in which quadrant or on which axis the given angle lies.

1.4.1 

1.4.2 

1.4.3 

1.4.4 

1.4.5 

1.4.6 

1.4.7 

1.4.8 

1.4.9 

1.4.10 

1.4.11 In which quadrant(s) do sine and cosine have the same sign?

1.4.12 In which quadrant(s) do sine and cosine have the opposite sign?

1.4.13 In which quadrant(s) do sine and tangent have the same sign?

BC   =  
AD

cot α−cot β

AC   =  
AD ⋅ tan β

tan β−tan α

BD  =  
AD ⋅ sin α

sin (β−α)
∠ ABD

5 6
1 5280

127∘

−127∘

313∘

−313∘

−90∘

621∘

230∘

2009∘

1079∘

−514∘
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1.4.14 In which quadrant(s) do sine and tangent have the opposite sign?

1.4.15 In which quadrant(s) do cosine and tangent have the same sign?

1.4.16 In which quadrant(s) do cosine and tangent have the opposite sign?

For Exercises 17-21, find the reference angle for the given angle.

1.4.17 

1.4.18 

1.4.19 

1.4.20 

1.4.21 

For Exercises 22-26, find the exact values of  and  when  has the indicated value.

1.4.22 

1.4.23 

1.4.24 

1.4.25 

1.4.26 

For Exercises 27-31, find the exact values of  and  when  has the indicated value.

1.4.27 

1.4.28 

1.4.29 

1.4.30 

1.4.31 

For Exercises 32-36, find the exact values of  and  when  has the indicated value.

1.4.32 

1.4.33 

1.4.34 

317∘

63∘

−126∘

696∘

275∘

sin θ tan θ cos θ

cos θ = 1
2

cos θ = − 1
2

cos θ = 0

cos θ = 2
5

cos θ = 1

cos θ tan θ sin θ

sin θ = 1
2

sin θ = − 1
2

sin θ = 0

sin θ = − 2
3

sin θ = 1

sin θ cos θ tan θ

tan θ = 1
2

tan θ = − 1
2

tan θ = 0
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1.4.35 

1.4.36 

For Exercises 37-40, use Table 1.3 to answer the following questions.

1.4.37 Does ?

1.4.38 Does ?

1.4.39 Does ?

1.4.40 Does ?

1.4.41 Expand Table 1.3 to include all integer multiples of . See Example 1.10 in Section 1.2.

1.5 Exercises
1.5.1 Let . Find the angle between  and  which is the

(a) reflection of  around the -axis
(b) reflection of  around the -axis
(c) reflection of  around the origin

1.5.2 Repeat Exercise 1 with .

1.5.3 Repeat Exercise 1 with .

1.5.4 We proved Equations 1.4-1.6 for any angle  in QI. Mimic that proof to show that the formulas hold for  in QII.

1.5.5 Verify Equations 1.4-1.6 for  on the coordinate axes, i.e. for , , , .

1.5.6 In Example 1.26 we used the formulas involving  to prove that the slopes of perpendicular lines are negative
reciprocals. Show that this result can also be proved using the formulas involving . (Hint: Only the last paragraph in
that example needs to be modified.)

For Exercises 7-14, find all angles  which satisfy the given equation:

1.5.7 

1.5.8 

1.5.9 

1.5.10 

1.5.11 

1.5.12 

1.5.13 

tan θ = 5
12

tan θ = 1

sin   +   sin   =   sin180∘ 45∘ 225∘

tan   −  tan   =   tan300∘ 30∘ 270∘

cos   −   cos   =   cos180∘ 60∘ 120∘

cos   =  (cos   −  (sin240∘ 120∘)2 120∘)2

15∘

θ = 32∘ 0∘ 360∘

θ x

θ y

θ

θ = 248∘

θ = −248∘

θ θ

θ θ = 0∘ 90∘ 180∘ 270∘

θ+90∘

θ−90∘

≤ θ <0∘ 360∘

sin θ = 0.4226

sin θ = 0.1909

cos θ = 0.4226

sin θ = 0

tan θ = 0.7813

sin θ = −0.6294

cos θ = −0.9816
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1.5.14 

1.5.15 In our proof of the Pythagorean Theorem in Section 1.2, we claimed that in a right triangle  it was possible to
draw a line segment  from the right angle vertex  to a point  on the hypotenuse  such that . Use the
picture below to prove that claim. (Hint: Notice how  is placed on the -coordinate plane. What is the slope of the
hypotenuse? What would be the slope of a line perpendicular to it?) Also, find the  coordinates of the point  in terms
of  and .

1.5.16 It can be proved without using trigonometric functions that the slopes of perpendicular lines are negative reciprocals.
Let  and  be perpendicular lines (with nonzero slopes), as in the picture below. Use the picture to
show that .(Hint: Think of similar triangles and the definition of slope.)

1.5.17 Prove Equations 1.19-1.21 by using Equations 1.10-1.12 and 1.13-1.15.
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tan θ = −9.514

△ABC

CD
¯ ¯¯̄¯̄¯̄

C D AB
¯ ¯¯̄¯̄¯̄

⊥CD
¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄

△ABC xy

(x, y) D

a b

y = x+m1 b1 y = x+m2 b2

= −m2
1
m1
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CHAPTER OVERVIEW
2: GENERAL TRIANGLES
Though the methods described will work for right triangles, they are mostly used to solve oblique
triangles, that is, triangles which do not have a right angle. There are two types of oblique triangles:
an acute triangle has all acute angles, and an obtuse triangle has one obtuse angle. As we will see,
Cases 1 and 2 can be solved using the law of sines, Case 3 can be solved using either the law of
cosines or the law of tangents, and Case 4 can be solved using the law of cosines.

2.1: THE LAW OF SINES
The Law of Sines states that the sides of a triangle are proportional to the sines of their opposite
angles.

2.2: THE LAW OF COSINES
We will now discuss how to solve a triangle where two sides and the angle between them are known. We will use the Law of Cosines
to solve this problem.

2.3: THE LAW OF TANGENTS
Law of Tangents is an alternative to the Law of Cosines for Case 3 scenarios (two sides and the included angle). Related to the Law of
Tangents are Mollweide's equations.

2.4: THE AREA OF A TRIANGLE
In elementary geometry you learned that the area of a triangle is one-half the base times the height. We will now use that, combined
with some trigonometry, to derive more formulas for the area when given various parts of the triangle.

2.5: CIRCUMSCRIBED AND INSCRIBED CIRCLES
Recall from the Law of Sines that any triangle has a common ratio of sides to sines of opposite angles. This common ratio has a
geometric meaning: it is the diameter (i.e. twice the radius) of the unique circle in which the trianble can be inscribed, called the
circumscribed circle of the triangle.

2.E: GENERAL TRIANGLES (EXERCISES)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for college
students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is taken than usual.
Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.
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2.1: The Law of Sines

If a triangle has sides of lengths , , and  opposite the angles , , and , respectively, then

Note that by taking reciprocals, Equation  can be written as

and it can also be written as a collection of three equations:

Another way of stating the Law of Sines is: The sides of a triangle are proportional to the sines of their opposite angles.

To prove the Law of Sines, let  be an oblique triangle. Then  can be acute, as in Figure (a), or it can be obtuse,
as in Figure (b). In each case, draw the altitude from the vertex at  to the side . In Figure (a) the altitude lies inside
the triangle, while in Figure (b) the altitude lies outside the triangle.

Figure : Proof of the Law of Sines for an oblique triangle 

Let  be the height of the altitude. For each triangle in Figure , we see that

and

in Figure (b),  by Equation (1.19) in Section 1.5). Thus, solving for  in Equation  and

substituting that into Equation  gives

and so putting  and  on the left side and  and  on the right side, we get

By a similar argument, drawing the altitude from  to  gives

so putting the last two equations together proves the theorem.

Theorem : Law of Sines2.1.1

a b c A B C

  =     =    .
a

sin A

b

sin B

c

sin C
(2.1.1)

2.1.1

  =     =    ,
sin A

a

sin B

b

sin C

c
(2.1.2)

  =     ,   =     ,   =  
a

b

sin A

sin B

a

c

sin A

sin C

b

c

sin B

sin C
(2.1.3)

Proof
△ABC ∠ ABC 2.1.1

2.1.1 C AB
¯ ¯¯̄¯̄¯̄

2.1.1

2.1.1

2.1.1 △ ABC

h 2.1.1

  =   sin A
h

b
(2.1.4)

  =   sin B
h

a
(2.1.5)

2.1.1 = sin ( −B) = sin B
h

a
180∘ h 2.1.5

2.1.4

  =   sin A ,
a sin B

b
(2.1.6)

a A b B

  =    .
a

sin A

b

sin B
(2.1.7)

A BC
¯ ¯¯̄¯̄¯̄

  =    ,
b

sin B

c

sin C
(2.1.8)

□
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Note that we did not prove the Law of Sines for right triangles, since it turns out (see Exercise 12) to be trivially true for that case.

Solve the triangle  given , , and .

Solution

We can find the third angle by subtracting the other two angles from , then use the law of sines to find the two unknown sides.
In this example we need to find , , and . First, we see that

So by the Law of Sines we have

Solve the triangle  given , , and .

Solution

In this example we know the side  and its opposite angle , and we know the side . We can use the Law of Sines to find the other
opposite angle , then find the third angle  by subtracting  and  from , then use the law of sines to find the third side .
By the Law of Sines, we have

Using the  button on a calculator gives . However, recall from Section 1.5 that . So there
is a second possible solution for , namely . Thus, we have to solve twice for  and  : once for 
and once for :

Hence,  and  are the two possible sets of solutions. This
means that there are two possible triangles, as shown in Figure .

Example : Case 1 - One side and two angles known2.1.1

△ABC a = 10 A = 41∘ C = 75∘

180∘

B b c

B  =     −  A  −  C   =     −     −   ⇒  .180∘ 180∘ 41∘ 75∘ B  =  64∘

 
b

sin B

 
c

sin C

=  
a

sin A

=  
a

sin A

⇒ b 

⇒ c 

=    
a sin B

sin A

=    
a sin C

sin A

=  
10 sin 64∘

sin 41∘

=  
10 sin 75∘

sin 41∘

⇒  ,  andb  =  13.7

⇒  .c  =  14.7

Example : Case 2 - Two sides and one opposite angle known2.1.2

△ABC a = 18 A = 25∘ b = 30

a A b

B C A B 180∘ c

  =   ⇒ sin B  =     =   ⇒ sin B  =  0.7044 .
sin B

b

sin A

a

b sin A

a

30 sin 25∘

18

sin−1 B = 44.8∘ sin ( −B) = sin B180∘

B − =180∘ 44.8∘ 135.2∘ C c B = 44.8∘

B = 135.2∘

B = 44.8∘

C = −A −B = − − =180∘ 180∘ 25∘ 44.8∘ 110.2∘

=   ⇒  c = =
c

sin C

a

sin A

a sin C

sin A

18 sin 110.2∘

sin 25∘

⇒  c = 40

B = 135.2∘

C = −A −B = − − =180∘ 180∘ 25∘ 135.2∘ 19.8∘

=   ⇒  c = =
c

sin C

a

sin A

a sin C

sin A

18 sin 19.8∘

sin 25∘

⇒  c = 14.4

(2.1.9)

B = , C = ,c = 4044.8∘ 110.2∘ B = , C = , c = 14.4135.2∘ 19.8∘

2.1.2
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Figure : Two possible solutions

In Example  we saw what is known as the ambiguous case. That is, there may be more than one solution. It is also possible for there
to be exactly one solution or no solution at all.

Solve the triangle  given , , and .

Solution

By the Law of Sines, we have

which is impossible since  for any angle . Thus, there is .

There is a way to determine how many solutions a triangle has in Case 2. For a triangle , suppose that we know the sides  and 
and the angle . Draw the angle  and the side , and imagine that the side  is attached at the vertex at  so that it can "swing'' freely,
as indicated by the dashed arc in Figure  below.

Figure : The ambiguous case when  is acute

If  is acute, then the altitude from  to  has height . As we can see in Figure (a)-(c), there is no solution when 
 (this was the case in Example 2.3); there is exactly one solution - namely, a right triangle - when ; and there are two

solutions when  (as was the case in Example 2.2). When  there is only one solution, even though it appears from Figure 
(d) that there may be two solutions, since the dashed arc intersects the horizontal line at two points. However, the point of

intersection to the left of  in Figure (d) can not be used to determine , since that would make  an obtuse angle, and we
assumed that  was acute.

If  is not acute (i.e.  is obtuse or a right angle), then the situation is simpler: there is no solution if , and there is exactly one
solution if  (see Figure ).

Figure : The ambiguous case when 

2.1.2

2.1.2

Example : Case 2 - Two sides and one opposite angle known2.1.3

△ABC a = 5 A = 30∘ b = 12

  =   ⇒ sin B  =     =   ⇒ sin B  =  1.2 ,
sin B

b

sin A

a

b sin A

a

12 sin 30∘

5

| sin B| ≤ 1 B no solution

△ABC a b

A A b a C

2.1.3

2.1.3 A

A C AB
¯ ¯¯̄¯̄¯̄

h = b sin A 2.1.3

a < h a = h

h < a < b a ≥ b

2.1.3

A 2.1.3 B A

A

A A a ≤ b

a > b 2.1.4

2.1.4 A ≥ 90◦
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Table 2.1 summarizes the ambiguous case of solving  when given , , and . Of course, the letters can be interchanged, e.g.
replace  and  by  and , etc.

Table 2.1 Summary of the ambiguous case

There is an interesting geometric consequence of the Law of Sines. Recall from Section 1.1 that in a right triangle the hypotenuse is the
largest side. Since a right angle is the largest angle in a right triangle, this means that the largest side is opposite the largest angle. What
the Law of Sines does is generalize this to any triangle:

In any triangle, the largest side is opposite the largest angle.

To prove this, let  be the largest angle in a triangle . If  then we already know that its opposite side  is the largest
side. So we just need to prove the result for when  is acute and for when  is obtuse. In both cases, we have  and .
We will first show that  and .

Figure 

If  is acute, then  and  are also acute. Since , imagine that  is in standard position in the -coordinate plane and that
we rotate the terminal side of  counterclockwise to the terminal side of the larger angle , as in Figure . If we pick points 

 and  on the terminal sides of  and , respectively, so that their distance to the origin is the same number , then
we see from the picture that , and hence

By a similar argument,  implies that . Thus,  and  when  is acute. We will
now show that these inequalities hold when  is obtuse.

If  is obtuse, then  is acute, as are  and . If  then , which is impossible. Thus, we must
have . Likewise, . So by what we showed above for acute angles, we know that 

 and . But we know from Section 1.5 that . Hence, 
 and  when  is obtuse.

Thus,  if  is acute or obtuse, so by the Law of Sines we have

By a similar argument, . Thus,  and , i.e.  is the largest side.
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△ABC a A b

a A c C

Proof
C △ABC C = 90∘ c

C C A ≤ C B ≤ C

sin A ≤ sin C sin B ≤ sin C

2.1.5

C A B A ≤ C A xy

A C 2.1.5

( , )x1 y1 ( , )x2 y2 A C r

≤y1 y2

sin A  =     ≤     =   sin C  .
y1

r

y2

r

B ≤ C sin B ≤ sin C sin A ≤ sin C sin B ≤ sin C C

C

C −C180∘ A B A > −C180∘ A +C > 180∘

A ≤ −C180∘ B ≤ −C180∘

sin A ≤ sin ( −C)180∘ sin B ≤ sin ( −C)180∘ sin C = sin ( −C)180∘

sin A ≤ sin C sin B ≤ sin C C

sin A ≤ sin C C

  =     ≤     =  1 ⇒   ≤  1 ⇒ a  ≤  c .
a

c

sin A

sin C

sin C

sin C

a

c

b ≤ c a ≤ c b ≤ c c

□
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2.2: The Law of Cosines
We will now discuss how to solve a triangle in Case 3: two sides and the angle between them. First, let us see what happens
when we try to use the Law of Sines for this case.

Solve the triangle  given , , and .

Solution

Using the Law of Sines, we have

where each of the equations has two unknown parts, making the problem impossible to solve. For example, to solve for 
we could use the equation

to solve for  in terms of  and substitute that into the equation

But that would just result in the equation

which we already knew and which still has two unknowns! Thus, this problem can not be solved using the Law of Sines.

To solve the triangle in the above example, we can use the Law of Cosines:

If a triangle has sides of lengths , , and  opposite the angles , , and , respectively, then

To prove the Law of Cosines, let  be an oblique triangle. Then  can be acute, as in Figure , or it
can be obtuse, as in Figure . In each case, draw the altitude from the vertex at  to the side . In Figure ,
the altitude divides  into two line segments with lengths  and , while in Figure  the altitude extends the
side  by a distance . Let  be the height of the altitude.

Example : Case 3 - Two sides and the angle between them Known2.2.1

△ABC A = 30∘
b = 4 c = 5

  =     =    ,
a

sin 30∘

4

sin B

5

sin C

a

=
4

sin B

5

sin C

sin B sin C

= .
a

sin 30∘

4

sin B

= ,
a

sin 30∘

5

sin C

Theorem : Law of Cosines2.2.1

a b c A B C

 a
2

 b
2

 c
2

= + −2bc cos A ,b
2

c
2

= + −2ca cos B ,c
2

a
2

= + −2ab cos C  .a
2

b
2

(2.2.1)

(2.2.2)

(2.2.3)

Proof
△ABC △ABC 2.2.1a

2.2.1b C AB
¯ ¯¯̄¯̄¯̄

2.2.1a

AB
¯ ¯¯̄¯̄¯̄

x c−x 2.2.1b

AB
¯ ¯¯̄¯̄¯̄

x h
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Figure : Proof of the Law of Cosines for an oblique triangle 

For each triangle in Figure , we see by the Pythagorean Theorem that

and likewise for the acute triangle in Figure  we see that

Thus, substituting the expression for  in Equation  into Equation  gives

But we see from Figure  that , so

And for the obtuse triangle in Figure  we see that

Thus, substituting the expression for  in Equation  into Equation  gives

But we see from Figure  that , and we know from Section 1.5 that 
. Thus,  and so

So for both acute and obtuse triangles we have proved Equation  in the Law of Cosines. Notice that the proof was
for  acute and obtuse. By similar arguments for  and  we get the other two formulas.

Note that we did not prove the Law of Cosines for right triangles, since it turns out (see Exercise 15) that all three formulas
reduce to the Pythagorean Theorem for that case. The Law of Cosines can be viewed as a generalization of the Pythagorean
Theorem.

Also, notice that it suffices to remember just one of the three Equations - , since the other two can be obtained by
"cycling'' through the letters , , and . That is, replace  by , replace  by , and replace  by  (likewise for the capital
letters). One cycle will give you the second formula, and another cycle will give you the third.

The angle between two sides of a triangle is often called the included angle. Notice in the Law of Cosines that if two sides
and their included angle are known (e.g. , , and ), then we have a formula for the square of the third side. We will now
solve the triangle from Example .

2.2.1 △ ABC

2.2.1

  =     −  h
2

a
2

x
2 (2.2.4)

2.2.1a

  =     +  (c−x  .b
2

h
2 )2 (2.2.5)

h
2 2.2.4 2.2.5

 b
2 =     −    +  (c−xa

2
x

2 )2

=     −    +     −  2cx  +  a
2

x
2

c
2

x
2

=     +    −  2cx .a
2

c
2

2.2.1a x = a cos B

  =     +     −  2ca cos B .b
2

a
2

c
2 (2.2.6)

2.2.1b

  =     +  (c+x  .b
2

h
2 )2 (2.2.7)

h
2 2.2.4 2.2.7

 b
2 =     −    +  (c+xa

2
x

2 )2

=     −    +     +  2cx  +  a
2

x
2

c
2

x
2

=     +    +  2cx .a
2

c
2

2.2.1a x = a cos ( −B)180∘

cos ( −B) = −cos B180∘
x = −a cos B

  =     +     −  2ca cos B .b
2

a
2

c
2 (2.2.8)

2.2.2

B A C

□

2.2.1 2.2.3

a b c a b b c c a

b c A

2.2.2

Example : Case 3 - Two sides and the angle between them Known2.2.2

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3255?pdf


Michael Corral 3/3/2021 2.2.3
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3255

Solve the triangle  given , , and .

Solution

We will use the Law of Cosines to find , use it again to find , then use . First, we have

Now we use the formula for  to find :

Thus, .

Notice in Example  that there was only one solution. For Case 3 this will always be true: when given two sides and their
included angle, the triangle will have exactly one solution. The reason is simple: when joining two line segments at a common
vertex to form an angle, there is exactly one way to connect their free endpoints with a third line segment, regardless of the
size of the angle.

You may be wondering why we used the Law of Cosines a second time in Example , to find the angle . Why not use the
Law of Sines, which has a simpler formula? The reason is that using the cosine function eliminates any ambiguity: if the
cosine is positive then the angle is acute, and if the cosine is negative then the angle is obtuse. This is in contrast to using the
sine function; as we saw in Section 2.1, both an acute angle and its obtuse supplement have the same positive sine.

To see this, suppose that we had used the Law of Sines to find  in Example :

How would we know which answer is correct? We could not immediately rule out  as too large, since it would
make  and so , which seems like it could be a valid solution. However, this solution is
impossible. Why? Because the largest side in the triangle is , which (as we learned in Section 2.1) means that  has to be
the largest angle. But  would not be the largest angle in this solution, and hence we have a contradiction.

It remains to solve a triangle in Case 4, i.e. given three sides. We will now see how to use the Law of Cosines for that case.

Solve the triangle  given , , and .

Solution

We will use the Law of Cosines to find  and , then use . First, we use the formula for  to find 
:

△ABC A = 30∘
b = 4 c = 5

a B C = −A−B180∘

 a
2 =    b

2

=    42

+   c
2

+   52

− 2bc cos A

− 2(4)(5) cos   =  6.36 ⇒  .30∘
a  =  2.52

b2 B

  =     +     −  2ca cos Bb
2

c
2

a
2 ⇒ cos B  =  

  +     −  c
2

a
2

b
2

2ca

⇒ cos B  =     =  0.6091
  + (2.52   −  52 )2 42

2(5)(2.52)

⇒ B  =  52.5∘

C = −A−B = − − ⇒180∘ 180∘ 30∘ 52.5∘
C = 97.5∘

2.2.2

2.2.2 B

B 2.2.2

sin B  =     =     =  0.7937 ⇒ B  =    or 
b sin A

a

4 sin 30∘

2.52
52.5∘ 127.5∘

B = 127.5∘

A+B = <157.5∘ 180∘
C = 22.5∘

c = 5 C

C = 22.5∘

Example : Case 4 - Three sides Known2.2.3

△ABC a = 2 b = 3 c = 4

B C A = −B−C180∘
b2

B
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Now we use the formula for  to find :

Thus, .

It may seem that there is always a solution in Case 4 (given all three sides), but that is not true, as the following example
shows.

Solve the triangle  given , , and .

Solution

If we blindly try to use the Law of Cosines to find , we get

which is impossible since . Thus, there is .

We could have saved ourselves some effort by recognizing that the length of one of the sides ( ) is greater than the
sums of the lengths of the remaining sides (  and ), which (as the picture below shows) is impossible in a
triangle.

The Law of Cosines can also be used to solve triangles in Case 2 (two sides and one opposite angle), though it is less
commonly used for that purpose than the Law of Sines. The following example gives an idea of how to do this.

Solve the triangle  given , , and .

Solution

In Example 2.2 from Section 2.1 we used the Law of Sines to show that there are two sets of solutions for this triangle: 
, ,  and , , . To solve this using the Law of Cosines, first

find  by using the formula for :

  =     +     −  2ca cos Bb
2

c
2

a
2 ⇒ cos B  =  

  +     −  c
2

a
2

b
2

2ca

⇒ cos B  =     =  0.6875
  +    −  42 22 32

2(4)(2)

⇒ B  =  46.6∘

c
2

C

  =     +     −  2ab cos Cc
2

a
2

b
2 ⇒ cos C   =  

  +     −  a2 b2 c2

2ab

⇒ cos C   =     =   −0.25
  +     −  22 32 42

2(2)(3)

⇒ C   =  104.5∘

A = −B−C = − − ⇒180∘ 180∘ 46.6∘ 104.5∘
A = 28.9∘

Example : Case 4 - Three sides Known2.2.4

△ABC a = 2 b = 3 c = 6

A

  =     +     −  2bc cos A ⇒ cos A  =     =     =  1.139 ,a
2

b
2

c
2   +     −  b

2
c

2
a

2

2bc

  +     −  32 62 22

2(3)(6)

| cos A| ≤ 1 no solution

c = 6

a = 2 b = 3

Example : Case 2 - Two sides and one opposite angle Known2.2.5

△ABC a = 18 A = 25∘
b = 30

B = 44.8∘
C = 110.2∘

c = 40 B = 135.2∘
C = 19.8∘

c = 14.4

c a
2
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which is a quadratic equation in , so we know that it can have either zero, one, or two real roots (corresponding to the
number of solutions in Case 2). By the quadratic formula, we have

Note that these are the same values for  that we found before. For  we get

which is close to what we found before (the small difference being due to different rounding). The other solution set can
be obtained similarly.

Like the Law of Sines, the Law of Cosines can be used to prove some geometric facts, as in the following example.

Use the Law of Cosines to prove that the sum of the squares of the diagonals of any parallelogram equals the sum of the
squares of the sides.

Figure 

Solution:

Let  and  be the lengths of the sides, and let the diagonals opposite the angles  and  have lengths  and ,
respectively, as in Figure . Then we need to show that

By the Law of Cosines, we know that

By properties of parallelograms, we know that , so

since . Thus,

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

  =     +     −  2bc cos Aa
2

b
2

c
2 ⇒ =     +    −  2(30)c cos182 302

c
2 25∘

⇒   − 54.38 c  +  576  =  0 ,c
2

c

c  =     =  40  or  14.4 .
54.38  ±   (54.38   −  4(1)(576))2− −−−−−−−−−−−−−−−−

√

2(1)

c c = 40

cos B  =     =     =  0.7111 ⇒ B  =   ⇒ C   =    ,
  +     −  c

2
a

2
b

2

2ca

  +     −  402 182 302

2(40)(18)
44.7∘ 110.3∘

Example : Parallelogram Diagonals2.2.6

2.2.2

a b C D c d

2.2.2

  +     =     +     +     +     =  2 (   +   ) .c
2

d
2

a
2

b
2

a
2

b
2

a
2

b
2

 c
2

 d
2

=     +    −  2ab cos C  ,  anda
2

b
2

=     +    −  2ab cos D .a
2

b
2

D = −C180∘

 d
2 =     +    −  2ab cos ( −C)a

2
b

2 180∘

=     +    +  2ab cos C  ,a
2

b
2

cos ( −C) = −cos C180∘

  +    c
2

d
2 =     +    −  2ab cos C   +     +     +  2ab cos Ca

2
b

2
a

2
b

2

=  2 (   +   ) .a
2

b
2
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2.3: The Law of Tangents
We have shown how to solve a triangle in all four cases discussed at the beginning of this chapter. An alternative to the Law of
Cosines for Case 3 (two sides and the included angle) is the Law of Tangents:

Note that since  for any angle , we can switch the order of the letters in each of the above formulas. For
example, we can rewrite Equation  as

and similarly for the other formulas. If , then it is usually more convenient to use Equation , while Equation  is
more convenient when .

We now have two equations involving  and , which we can solve by adding the equations:

We can find the remaining side  by using the Law of Sines:

Note that in any triangle , if  then  (why?), and so both sides of Equation  would be  (since 
). This means that the Law of Tangents is of no help in Case 3 when the two known sides are equal. For this reason,

and perhaps also because of the somewhat unusual way in which it is used, the Law of Tangents seems to have fallen out of
favor in trigonometry books lately. It does not seem to have any advantages over the Law of Cosines, which works even when
the sides are equal, requires slightly fewer steps, and is perhaps more straightforward.

Related to the Law of Tangents are Mollweide's equations:

If a triangle has sides of lengths , , and  opposite the angles , , and , respectively, thena b c A B C

 
a −b

a +b

 
b −c

b +c

 
c −a

c +a

=    ,
tan (A −B)1

2

tan (A +B)1
2

=    ,
tan (B −C)1

2

tan (B +C)1
2

=    .
tan (C −A)1

2

tan (C +A)1
2

(2.3.1)

(2.3.2)

(2.3.3)

tan (−θ) = −tan θ θ

2.3.1

  =    ,
b −a

b +a

tan (B −A)1
2

tan (B +A)1
2

(2.3.4)

a > b 2.3.1 2.3.4

b > a

, so . Thus, by the Law of Tangents,A + B + C = 180∘
A + B = − C = − =180∘ 180∘ 96∘ 84∘

  =  
a −b

a +b

tan (A −B)1
2

tan (A +B)1
2

⇒   =  
5 −3

5 +3

tan (A −B)1
2

tan ( )1
2

84∘

⇒ tan (A −B)  =   tan   =  0.22511
2

2
8

42∘

⇒ (A −B)  =   ⇒ A −B  =    .1
2

12.7∘ 25.4∘

A B

A

A

−−
2A

−B

+B

−−

= 25.4∘

= 84∘

−−−−
= ⇒ ⇒ B  =   − ⇒109.4∘

A = 54.7∘ 84∘ 54.7∘
B = 29.3∘

c

c  =     =   ⇒
a sin C

sin A

5 sin 96∘

sin 54.7∘ c = 6.09

△ABC a = b A = B 2.3.1 0

tan = 00∘

Mollweide's equations:
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For any triangle ,

Note that all six parts of a triangle appear in both of Mollweide's equations. For this reason, either equation can be used to
check a solution of a triangle. If both sides of the equation agree (more or less), then we know that the solution is correct.

Recall that the full solution was , , , , , and . We will check this with
Equation :

The small difference ( ) is due to rounding errors from the original solution, so we can conclude that both sides
of the equation agree, and hence the solution is correct.

Can a triangle have the parts , , , , , and ?

Solution:

Before using Mollweide's equations, simpler checks are that the angles add up to  and that the smallest and largest
sides are opposite the smallest and largest angles, respectively. In this case all those conditions hold. So check with
Mollweide's Equation :

Here the difference is far too large, so we conclude that there is no triangle with these parts.

We will prove the Law of Tangents and Mollweide's equations in Chapter 3, where we will be able to supply brief analytic
proofs.

Contributors and Attributions
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△ABC

 
a −b

c

 
a +b

c

=    ,  and
sin (A −B)1

2

cos C
1
2

=    .
cos (A −B)1

2

sin C
1
2

(2.3.5)

(2.3.6)

Solution
a = 5 b = 3 c = 6.09 A = 54.7∘

B = 29.3∘
C = 96∘

2.3.5

 
a −b

c

 
5 −3

6.09

 
2

6.09
0.3284 

=  
sin (A −B)1

2

cos C
1
2

=  
sin ( − )1

2
54.7∘ 29.3∘

cos ( )1
2

96∘

=  
sin 12.7∘

cos 48∘

=  0.3285 ✓

≈ 0.0001

Example 2.12
a = 6 b = 7 c = 9 A = 55∘

B = 60∘
C = 65∘

180∘

2.3.6

 
a +b

c

 
6 +7

9

 
13

9
1.44 

=  
cos (A −B)1

2

sin C
1
2

=  
cos ( − )1

2
55∘ 60∘

sin ( )1
2

65∘

=  
cos (− )2.5∘

sin 32.5∘

=  1.86 ×
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2.4: The Area of a Triangle

Figure 2.4.1 Area of 

In each case we draw an altitude of height  from the vertex at  to , so that the area (which we will denote by the letter 
) is given by . But we see that  in each of the triangles (since  and  in

Figure 2.4.1(b), and  in Figure 2.4.1(c)). We thus get the following formula:

The above formula for the area of  is in terms of the known parts , , and . Similar arguments for the angles  and 
 give us:

Notice that the height  does not appear explicitly in these formulas, although it is implicitly there. These formulas have the
advantage of being in terms of parts of the triangle, without having to find  separately.

Find the area of the triangle  given
, , and .

Solution:

Using Equation , the area  is given by:

Case 2: Three angles and any side.

Suppose that we have a triangle  in which one side, say, , and all three angles are known. By the Law of Sines we
know that

so substituting this into Equation  we get:

△ ABC

h C AB
¯ ¯¯̄¯̄¯̄

K K = hc
1
2

h = b sin A h = b sin A = sin = 190∘

h = b sin ( −A) = b sin A180∘

Area  =  K  =   bc sin A
1
2

(2.4.1)

△ABC A b c B

C

Area 

Area 

=  K =   ac sin B
1
2

=  K =   ab sin C
1
2

(2.4.2)

(2.4.3)

h

h

Example 2.13
△ABC

A = 33∘
b = 5 c = 7

2.4.1 K

K 

K 

=   bc sin A
1
2

=   (5)(7) sin1
2

33∘

=  9.53

△ABC a

c  =    ,
a sin C

sin A

2.4.2

Area  =  K  =  
sin B sin Ca2

2 sin A
(2.4.4)
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Similar arguments for the sides  and  give us:

Solution:

Using Equation , the area  is given by:

Case 3: Three sides.

Suppose that we have a triangle  in which all three sides are known. Then Heron's formula gives us the area:

For a triangle  with sides , , and , let  (i.e.  is the perimeter of the triangle).
Then the area  of the triangle is

To prove this, first remember that the area  is one-half the base times the height. Using  as the base and the altitude  as the
height, as before in Figure 2.4.1, we have . Squaring both sides gives us

Figure 2.4.2 Proof of Heron’s formula

By the Pythagorean Theorem, we see that . In Figure 2.4.2(a), we see that . And in Figure
2.4.2(b) we see that . Hence, in either case we have , and so

(Note that the above equation also holds when  since  and ). Thus, substituting Equation  into
Equation , we have

b c

Area 

Area 

=  K =  
sin A sin Cb

2

2 sin B

=  K =  
sin A sin Bc

2

2 sin C

(2.4.5)

(2.4.6)

Find the area of the triangle  given\ , , , and .△ABC A = 115∘ B = 25∘ C = 40∘
a = 12

2.4.4 K

K 

K 

=  
sin B sin Ca

2

2 sin A

=  
sin sin122 25∘ 40∘

2 sin 115∘

=  21.58

△ABC

Heron's formula
△ABC a b c s = (a +b +c)1

2
2s = a +b +c

K

Area  =  K  =     .s (s −a) (s −b) (s −c)
− −−−−−−−−−−−−−−−−−

√ (2.4.7)

K c h

K = hc
1
2

=  .K
2 1

4
h

2
c

2 (2.4.8)

= −(ADh
2

b
2 )2

AD = b cos A

AD = b cos( −A) = −b cos A180∘ (AD = (cos A)2
b

2 )2

  =   − (cos A   =   (1 −(cos A )  =   (1 +cos A) (1 −cos A) .h
2

b
2

b
2 )2

b
2 )2

b
2 (2.4.9)

A = 90∘ cos = 090∘
h = b 2.4.9

2.4.8
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By the Law of Cosines we know that

and similarly

Thus, substituting these expressions into Equation , we have

and since we defined , we see that

so upon taking square roots we get

Solution

Using Heron's formula with , the area  is given by:

Heron's formula is useful for theoretical purposes (e.g. in deriving other formulas). However, it is not well-suited for calculator
use, exhibiting what is called numerical instability for "extreme'' triangles, as in the following example.

Find the area of the triangle  given , , and .

Solution:

To use Heron's formula, we need to calculate . Notice that the actual value of  is 
, which has  digits. Most calculators can store -  digits internally (even if they display less), and

= (1 +cos A) (1 −cos A) .K
2 1

4
b

2
c

2 (2.4.10)

1 +cos A  =  1 +   =     =     =  
+ −b2 c2 a2

2bc

2bc + + −b2 c2 a2

2bc

(b +c −)2
a

2

2bc

((b +c) +a) ((b +c) −a)

2bc

=    ,
(a +b +c) (b +c −a)

2bc

1 −cos A  =  1 −   =     =     =  
+ −b

2
c

2
a

2

2bc

2bc − − +b
2

c
2

a
2

2bc

−(b −ca
2 )2

2bc

(a −(b −c)) (a +(b −c))

2bc

=    .
(a −b +c) (a +b −c)

2bc

2.4.10

 K
2 =   ⋅1

4
b

2
c

2 (a +b +c) (b +c −a)

2bc

(a −b +c) (a +b −c)

2bc

=   ⋅ ⋅ ⋅  ,
a +b +c

2

b +c −a

2

a −b +c

2

a +b −c

2

s = (a +b +c)1
2

  =  s (s −a) (s −b) (s −c) ,K
2

K  =     . QEDs (s −a) (s −b) (s −c)
− −−−−−−−−−−−−−−−−−

√

s = (a +b +c) = (5 +4 +7) = 81
2

1
2

K

K  =   s (s −a) (s −b) (s −c)
− −−−−−−−−−−−−−−−−−

√

=     =   ⇒  .8 (8 −5) (8 −4) (8 −7)
− −−−−−−−−−−−−−−−−−

√ 96
−−

√ K  =  4   ≈  9.86
–

√

Example 2.16
△ABC a = 1000000 b = 999999.9999979 c = 0.0000029

s = (a +b +c)1
2

a +b +c

2000000.0000008 14 12 14
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hence may round off that value of  to . When we then divide that rounded value for  by  to
get , some calculators (e.g. the TI-83 Plus) will give a rounded down value of .

This is a problem because , and so we would get , causing Heron's formula to give us an area of 
for the triangle! And this is indeed the incorrect answer that the TI-83 Plus returns. Other calculators may give some other
inaccurate answer, depending on how they store values internally. The actual area - accurate to  decimal places - is 

, i.e. it is basically .

The above example shows how problematic floating-point arithmetic can be. Luckily there is a better formula for the area of a
triangle when the three sides are known:

For a triangle  with sides , the area is:

To use this formula, sort the names of the sides so that . Then perform the operations inside the square root in the
exact order in which they appear in the formula, including the use of parentheses. Then take the square root and divide by .
For the triangle in Example 2.16, the above formula gives an answer of exactly  on the same TI-83 Plus calculator that
failed with Heron's formula. What is amazing about this formula is that it is just Heron's formula rewritten! The use of
parentheses is what forces the correct order of operations for numerical stability.

Another formula for the area of a triangle given its three sides is given below:

For a triangle  with sides , the area is:

Contributors and Attributions 
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

a +b +c 2000000 a +b +c 2
s 1000000

a = 1000000 s −a = 0 0

15
K = 0.99999999999895 1

△ABC a ≥ b ≥ c

Area  =  K  =   1
4

(a +(b +c)) (c −(a −b)) (c +(a −b)) (a +(b −c))
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (2.4.11)

a ≥ b ≥ c

4
K = 1

△ABC a ≥ b ≥ c

Area  =  K  =   1
2

  −  a
2
c

2 ( )+ −a2 c2 b
2

2

2
− −−−−−−−−−−−−−−−

√ (2.4.12)
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2.5: Circumscribed and Inscribed Circles
Recall from the Law of Sines that any triangle  has a common ratio of sides to sines of opposite angles, namely

This common ratio has a geometric meaning: it is the diameter (i.e. twice the radius) of the unique circle in which  can
be inscribed, called the circumscribed circle of the triangle. Before proving this, we need to review some elementary
geometry.

Figure 2.5.1 Types of angles in a circle

An inscribed angle of a circle is an angle whose vertex is a point  on the circle and whose sides are line segments (called

chords) from  to two other points on the circle. In Figure 2.5.1(b),  is an inscribed angle that intercepts the arc . We
state here without proof a useful relation between inscribed and central angles:

If an inscribed angle  and a central angle  intercept the same arc, then . Thus, inscribed angles
which intercept the same arc are equal.

Figure 2.5.1(c) shows two inscribed angles,  and , which intercept the same arc  as the central angle , and
hence  (so .

We will now prove our assertion about the common ratio in the Law of Sines:

For any triangle , the radius  of its circumscribed circle is given by:

Note: For a circle of diameter , this means , , and .)

To prove this, let  be the center of the circumscribed circle for a triangle . Then  can be either inside, outside, or
on the triangle, as in Figure 2.5.2 below. In the first two cases, draw a perpendicular line segment from  to  at the point 

.

Figure 2.5.2 Circumscribed circle for 

△ABC

  =     =    .
a

sin A

b

sin B

c

sin C

△ABC

A

A ∠ A BC

 

Theorem 2.4
∠ A ∠ O ∠ A = ∠ O

1
2

∠ A ∠ D BC

 
∠ O

∠ A = ∠ D = ∠ O
1
2

∠ O = 2 ∠ A = 2 ∠ D )

Theorem 2.5
△ABC R

2 R  =     =     =  
a

sin A

b

sin B

c

sin C
(2.5.1)

1 a = sin A b = sin B c = sin C

O △ABC O

O AB
¯ ¯¯̄¯̄¯̄

D

△ ABC
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The radii  and  have the same length , so  is an isosceles triangle. Thus, from elementary geometry we know
that  bisects both the angle  and the side . So  and . But since the inscribed

angle  and the central angle  intercept the same arc , we know from Theorem 2.4 that 
. Hence, . So since , we have

so by the Law of Sines the result follows if  is inside or outside .

Now suppose that  is on , say, on the side , as in Figure 2.5.2(c). Then  is a diameter of the circle, so 
 by Thales' Theorem. Hence, , and so , and the result again follows by the

Law of Sines. QED

Figure 2.5.3
Solution:

We know that  is a right triangle. So as we see from Figure 2.5.3, . Thus,

Note that since , the diameter of the circle is , which is the same as . Thus,  must be a diameter of the
circle, and so the center  of the circle is the midpoint of .

For any right triangle, the hypotenuse is a diameter of the circumscribed circle, i.e. the center of the circle is the midpoint
of the hypotenuse.

For the right triangle in the above example, the circumscribed circle is simple to draw; its center can be found by measuring a
distance of  units from  along .

We need a different procedure for acute and obtuse triangles, since for an acute triangle the center of the circumscribed circle
will be inside the triangle, and it will be outside for an obtuse triangle. Notice from the proof of Theorem 2.5 that the center 
was on the perpendicular bisector of one of the sides ( ). Similar arguments for the other sides would show that  is on the
perpendicular bisectors for those sides:

For any triangle, the center of its circumscribed circle is the intersection of the perpendicular bisectors of the sides.

OA
¯ ¯¯̄¯̄¯̄

OB
¯ ¯¯̄¯̄¯̄

R △AOB

OD
¯ ¯¯̄¯̄¯̄

∠ AOB AB
¯ ¯¯̄¯̄¯̄

∠ AOD = ∠ AOB
1
2

AD = c

2

∠ ACB ∠ AOB AB

 

∠ ACB = ∠ AOB
1
2

∠ ACB = ∠ AOD C = ∠ ACB

sin C   =   sin ∠ AOD  =     =     =   ⇒ 2 R  =    ,
AD

OA

c

2

R

c

2R

c

sin C

O △ABC

O △ABC AB
¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄

C = 90∘ sin C = 1 2 R = AB = c = =c

1
c

sin C

△ABC sin A = 3/5

2 R  =     =     =  5 ⇒  .
a

sin A

3
3
5

R  =  2.5

R = 2.5 5 AB AB
¯ ¯¯̄¯̄¯̄

O AB
¯ ¯¯̄¯̄¯̄

Corollary 2.6

2.5 A AB
¯ ¯¯̄¯̄¯̄

O

AB
¯ ¯¯̄¯̄¯̄

O

Corollary 2.7
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Figure 2.5.4

Find the radius  of the circumscribed circle for the triangle  from Example 2.6 in Section 2.2: , ,
and . Then draw the triangle and the circle.

Solution:

In Example 2.6 we found , so , so .

In Figure 2.5.5(a) we show how to draw : use a ruler to draw the longest side  of length , then use a
compass to draw arcs of radius  and  centered at  and , respectively. The intersection of the arcs is the vertex .

Figure 2.5.5

In Figure 2.5.5(b) we show how to draw the circumscribed circle: draw the perpendicular bisectors of  and ; their
intersection is the center  of the circle. Use a compass to draw the circle centered at  which passes through .

Theorem 2.5 can be used to derive another formula for the area of a triangle:

For a triangle , let  be its area and let  be the radius of its circumscribed circle. Then

To prove this, note that by Theorem 2.5 we have

Substitute those expressions into Equation 2.26 from Section 2.4 for the area :

Combining Theorem 2.8 with Heron's formula for the area of a triangle, we get:

For a triangle , let . Then the radius  of its circumscribed circle is

Example 2.18
R △ABC a = 2 b = 3

c = 4

A = 28.9∘ 2 R = = = 4.14a

sin A

2
sin 28.9∘ R = 2.07

△ABC AB
¯ ¯¯̄¯̄¯̄

c = 4

3 2 A B C

AB
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

O O A

Theorem 2.8
△ABC K R

K  =   (and hence  R  =    ) .
abc

4 R

abc

4 K
(2.5.2)

2 R  =     =     =   ⇒ sin A  =    ,    sin B  =    ,    sin C   =    .
a

sin A

b

sin B

c

sin C

a

2 R

b

2 R

c

2 R

K

K  =     =     =   QED
sin B sin Ca

2

2 sin A

⋅ ⋅a2 b

2 R

c

2 R

2 ⋅ a

2 R

abc

4 R

Corollary 2.9

△ABC s = (a +b +c)1
2

R

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3258?pdf


Michael Corral 3/10/2021 2.5.4
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3258

Figure 2.5.6 Inscribed circle for 

Let  be the radius of the inscribed circle, and let , , and  be the points on , , and , respectively, at which the
circle is tangent. Then , , and . Thus,  and  are equivalent triangles, since
they are right triangles with the same hypotenuse  and with corresponding legs  and  of the same length . Hence, 

, which means that  bisects the angle . Similarly,  bisects  and  bisects . We have thus
shown:

For any triangle, the center of its inscribed circle is the intersection of the bisectors of the angles.

We will use Figure 2.5.6 to find the radius  of the inscribed circle. Since  bisects , we see that , and so 
. Now,  and  are equivalent triangles, so . Similarly,  and 

. Thus, if we let , we see that

Hence, . Similar arguments for the angles  and  give us:

For any triangle , let . Then the radius  of its inscribed circle is

We also see from Figure 2.5.6 that the area of the triangle  is

Similarly,  and . Thus, the area  of  is

We have thus proved the following theorem:

R  =     .
abc

4 s (s −a) (s −b) (s −c)
− −−−−−−−−−−−−−−−−−

√
(2.5.3)

△ ABC

r D E F AB
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

⊥OD
¯ ¯¯̄¯̄¯̄

AB
¯ ¯¯̄¯̄¯̄

⊥OE
¯ ¯¯̄¯̄¯̄

BC
¯ ¯¯̄¯̄¯̄

⊥OF
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

△OAD △OAF

OA
¯ ¯¯̄¯̄¯̄

OD
¯ ¯¯̄¯̄¯̄

OF
¯ ¯¯̄¯̄¯̄

r

∠ OAD = ∠ OAF OA
¯ ¯¯̄¯̄¯̄

A OB
¯ ¯¯̄¯̄¯̄

B OC
¯ ¯¯̄¯̄¯̄

C

r OA
¯ ¯¯̄¯̄¯̄

A tan A =1
2

r

AD

r = AD ⋅ tan A
1
2

△OAD △OAF AD = AF DB = EB

F C = CE s = (a +b +c)1
2

2 s 

s 

AD 

=  a  +  b  +  c  =  (AD +DB)  +  (CE +EB)  +  (AF +F C)

=  AD  +  EB  +  CE  +  EB  +  AD  +  CE  =  2 (AD +EB +CE)

=  AD  +  EB  +  CE  =  AD  +  a

=  s −a .

r = (s −a) tan A
1
2

B C

Theorem 2.10
△ABC s = (a +b +c)1

2
r

r  =  (s −a) tan A  =  (s −b) tan B  =  (s −c) tan C  .1
2

1
2

1
2

(2.5.4)

△AOB

Area(△AOB)  =   base ×height  =   c r .1
2

1
2

Area(△BOC) = a r
1
2

Area(△AOC) = b r
1
2

K △ABC

K 

r 

=  Area(△AOB)  +  Area(△BOC)  +  Area(△AOC)  =   c r  +   a r  +   b r
1
2

1
2

1
2

=   (a +b +c) r  =  sr ,  so by Heron's formula we get1
2

=     =     =     =     .
K

s

s (s −a) (s −b) (s −c)
− −−−−−−−−−−−−−−−−−

√

s

s (s −a) (s −b) (s −c)

s2

− −−−−−−−−−−−−−−−−−

√
(s −a) (s −b) (s −c)

s

− −−−−−−−−−−−−−−−−
√

Theorem 2.11
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For any triangle , let . Then the radius  of its inscribed circle is

Recall from geometry how to bisect an angle: use a compass centered at the vertex to draw an arc that intersects the sides of
the angle at two points. At those two points use a compass to draw an arc with the same radius, large enough so that the two
arcs intersect at a point, as in Figure 2.5.7. The line through that point and the vertex is the bisector of the angle. For the
inscribed circle of a triangle, you need only two angle bisectors; their intersection will be the center of the circle.

Figure 2.5.7

Find the radius  of the inscribed circle for the triangle  from Example 2.6 in Section 2.2: , , and 
. Draw the circle.

Figure 2.5.8

Solution:

Using Theorem 2.11 with , we have

Figure 2.5.8 shows how to draw the inscribed circle: draw the bisectors of  and , then at their intersection use a
compass to draw a circle of radius .
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△ABC s = (a +b +c)1
2

r

r  =     =     .
K

s

(s −a) (s −b) (s −c)

s

− −−−−−−−−−−−−−−−−
√ (2.5.5)

Example 2.19
r △ABC a = 2 b = 3

c = 4

s = (a +b +c) = (2 +3 +4) =1
2

1
2

9
2

r  =     =     =    .
(s −a) (s −b) (s −c)

s

− −−−−−−−−−−−−−−−−
√

( −2) ( −3) ( −4)9
2

9
2

9
2

9
2

− −−−−−−−−−−−−−−−−−−−

⎷


 5

12

−−−
√

A B

r = ≈ 0.6455/12
− −−−

√
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2.E: General Triangles (Exercises)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for
college students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is
taken than usual. Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

2.1 Exercises
For Exercises 1-9, solve the triangle .

2.1.1 

2.1.2 

2.1.3 

2.1.4 

2.1.5 

2.1.6 

2.1.7 

2.1.8 

2.1.9 

2.1.10 Draw a circle with a radius of 2 inches and inscribe a triangle inside the circle. Use a ruler and a protractor to measure
the sides  and the angles  of the triangle. The Law of Sines says that the ratios  are equal. Verify
this for your triangle. What relation does that common ratio have to the diameter of your circle?

2.1.11 An observer on the ground measures an angle of inclination of  to an approaching airplane, and 10 seconds later
measures an angle of inclination of . If the airplane is flying at a constant speed and at a steady altitude of 6000 ft in a
straight line directly over the observer, find the speed of the airplane in miles per hour. (Note: 1 mile = 5280 ft)

2.1.12 Prove the Law of Sines for right triangles. (Hint: One of the angles is known.)

2.1.13 For a triangle , show that .

2.1.14 For a triangle , show that .

2.1.15 One diagonal of a parallelogram is 17 cm long and makes angles of  and  with the sides. Find the lengths of the
sides.

2.1.16 Explain why in Case 1 (one side and two angles) there is always exactly one solution.

2.2 Exercises
For Exercises 1-6, solve the triangle .

2.2.1 , , 

△ ABC

a = 10,A = ,B =35∘ 25∘

b = 40,B = , c = 3575∘

A = ,B = , c = 1540∘ 45∘

a = 5,A = , b = 742∘

a = 40,A = , c = 3025∘

a = 5,A = , b = 947∘

a = 12,A = , b = 1594∘

a = 15,A = , b = 1294∘

a = 22,A = , c = 2750∘

a, b, c A,B,C , ,a

sinA

b
sinB

c

sinC

30∘

55∘

△ ABC =a±b
c

sinA±sinB

sinC

△ ABC =a
c

sin(B+C)

sinC

36∘ 15∘

△ABC

A = 60∘ b = 8 c = 12
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2.2.2 , , 

2.2.3 , , 

2.2.4 , , 

2.2.5 , , 

2.2.6 , , 

2.2.7 The diagonals of a parallelogram intersect at a  angle and have lengths of  and  cm. Find the lengths of the sides of
the parallelogram. (Hint: The diagonals bisect each other.)

2.2.8 Two trains leave the same train station at the same time, moving along straight tracks that form a  angle. If one train
travels at an average speed of  mi/hr and the other at an average speed of  mi/hr, how far apart are the trains after half an
hour?

2.2.9 Three circles with radii of , , and  cm, respectively, are tangent to each other externally. Find the angles of the triangle
whose vertexes are the centers of the circles.

2.2.10 Find the length  of the diagonal of the quadrilateral in Figure 2.2.3 below.

Figure 2.2.3 Exercise 10

Figure 2.2.4 Exercise 11

2.2.11 Two circles of radii  and  cm, respectively, intersect at two points. At either point of intersection, the tangent lines to
the circles form a  angle, as in Figure 2.2.4 above. Find the distance between the centers of the circles.

2.2.12 Use the Law of Cosines to show that for any triangle ,  if  is acute,  if  is obtuse,
and  if  is a right angle.

2.2.13 Show that for any triangle ,

2.2.14 Show that for any triangle ,

A = 30∘ b = 4 c = 6

a = 7 B = 60∘ c = 9

a = 7 b = 3 c = 9

a = 6 b = 4 c = 1

a = 11 b = 13 c = 16

42∘ 12 7

35∘

100 90

4 5 6

x

5 3

60∘

△ABC < +c2 a2 b2 C > +c2 a2 b2 C

= +c2 a2 b2 C

△ABC

  +     +     =    .
cos A

a

cos B

b

cos C

c

+ +a2 b2 c2

2abc

△ABC
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What do the terms in parentheses represent geometrically? Use your answer to explain why 
 for any triangle, even if one of the cosines is negative.

2.2.15 Prove the Law of Cosines (i.e. Equations 2.9-2.11) for right triangles.

2.2.16 Recall from elementary geometry that a median of a triangle is a line segment from any vertex to the midpoint of the
opposite side. Show that the sum of the squares of the three medians of a triangle is  the sum of the squares of the sides.

2.2.17 The Dutch astronomer and mathematician Willebrord Snell (1580-1626) wrote the Law of Cosines as

in his trigonometry text Doctrina triangulorum (published a year after his death). Show that this formula is equivalent to
Equation 2.11 in our statement of the Law of Cosines.

2.2.18 Suppose that a satellite in space, an earth station, and the center of the earth all lie in the same plane. Let  be the radius
of the earth, let  be the distance from the center of the earth to the satellite (called the orbital radius of the satellite), and let 
be the distance from the earth station to the satellite. Let  be the angle of elevation from the earth station to the satellite, and
let  and  be the angles shown in Figure 2.25.

Figure 2.2.5

Use the Law of Cosines to show that

and then use  and the Law of Sines to show that

cos A  +   cos B  +   cos C   =    .
(b+c−a)  +   (a+c−b)  +   (a+b−c)a2 b2 c2

2abc

cos A  +   cos B  +   cos C   >  0

3
4

  =  
2ab

− (a−bc2 )2

1

1 − cos C
(2.E.1)

re
rs d

E

γ ψ

d  =     ,rs 1 + − 2 ( ) cos γ( )
re

rs

2 re

rs

− −−−−−−−−−−−−−−−−−−−−−−−

√ (2.E.2)

E = ψ−90∘
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Note: This formula allows the angle of elevation  to be calculated from the coordinates of the earth station and the
subsatellite point (where the line from the satellite to the center of the earth crosses the surface of the earth).

2.3 Exercises
For Exercises 1-3, use the Law of Tangents to solve the triangle .

2.3.1 , , 

2.3.2 , , 

2.3.3 , , 

For Exercises 4-6, check if it is possible for a triangle to have the given parts.

2.3.4 , , , , , 

2.3.5 , , , , , 

2.3.6 , , , , , 

2.3.7 Let  be a right triangle with . Show that .

2.3.8 For any triangle , show that .

2.3.9 For any triangle , show that . (Hint: Draw the altitude from the vertex  to .)

Notice that this formula provides another way of solving a triangle in Case 3 (two sides and the included angle).

2.3.10 For any triangle , show that . This is another check of a triangle.

2.3.11 If , show that the triangle  is isosceles.

2.3.12 Let  be a quadrilateral which completely contains its two diagonals. The quadrilateral has eight parts: four sides
and four angles. What is the smallest number of parts that you would need to know to solve the quadrilateral? Explain your
answer.

2.4 Exercises
For Exercises 1-6, find the area of the triangle .

2.4.1 , , 

2.4.2 , , 

2.4.3 , , , 

2.4.4 , , , 

cos E  =    .
sin γ

1 + − 2 ( ) cos γ( )
re

rs

2
re

rs

− −−−−−−−−−−−−−−−−−−−−−−−

√

(2.E.3)

E

△ABC

a = 12 b = 8 C = 60∘

A = 30∘ b = 4 c = 6

a = 7 B = 60∘ c = 9

a = 5 b = 7 c = 10 A = 27.7∘ B = 40.5∘ C = 111.8∘

a = 3 b = 7 c = 9 A = 19.2∘ B = 68.2∘ C = 92.6∘

a = 6 b = 9 c = 9 A = 39∘ B = 70.5∘ C = 70.5∘

△ABC C = 90∘ tan (A−B) =1
2

a−b

a+b

△ABC tan (A−B) = cot C1
2

a−b

a+b

1
2

△ABC tan A =
a sin B

c−a cos B
C AB

¯ ¯¯̄¯̄¯̄

△ABC c = b cos A+a cos B

b cos A = a cos B △ABC

ABCD

△ABC

A = 70∘ b = 4 c = 12

a = 10 B = 95∘ c = 35

A = 10∘ B = 48∘ C = 122∘ c = 11

A = 171∘ B = 1∘ C = 8∘ b = 2
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2.4.5 , , 

2.4.6 , , 

2.4.7 Find the area of the quadrilateral in Figure 2.4.3 below.

Figure 2.4.3 Exercise 7

Figure 2.4.4 Exercise 8

2.4.8 Let  be a quadrilateral which completely contains its two diagonals, as in Figure 2.4.4 above. Show that the area 
 of  is equal to half the product of its diagonals and the sine of the angle they form, i.e. .

2.4.9 From Equation 2.26 derive the following formula for the area of a triangle :

2.4.10 Show that the triangle area formula

is equivalent to Heron's formula. (Hint: In Heron's formula replace  by .)
2.4.11 Show that the triangle area Equation 2.34 is equivalent to Heron's formula. (Hint: Factor the expression inside the
square root.)

2.4.12 Find the angle  in Example 2.16, then use Equation 2.23 to find the area. Did it work?

2.5 Exercises
For Exercises 1-6, find the radii  and  of the circumscribed and inscribed circles, respectively, of the triangle .

2.5.1 , , 

2.5.2 , , 

2.5.3 , , 

2.5.4 , , 

a = 2 b = 3 c = 4

a = 5 b = 6 c = 5

ABCD

K ABCD K = AC ⋅ BD sin θ1
2

△ABC

Area  =  K  =  
sin B sin Ca2

2 sin (B+C)
(2.E.4)

Area  =  K  =   1
4

(a+(b+c)) (c−(a−b)) (c+(a−b)) (a+(b−c))
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (2.E.5)

s (a+b+c)1
2

A

R r △ABC

a = 2 b = 4 c = 5

a = 6 b = 8 c = 8

a = 5 b = 7 C = 40∘

A = 170∘ b = 100 c = 300
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2.5.5 , , 

2.5.6 , , 

For Exercises 7 and 8, draw the triangle  and its circumscribed and inscribed circles accurately, using a ruler and
compass (or computer software).

2.5.7  in,  in,  in

2.5.8  in,  in,  in

2.5.9 For any triangle , let . Show that

2.5.10 Show that for any triangle , the radius  of its circumscribed circle is

2.5.11 Show that for any triangle , the radius  of its circumscribed circle and the radius  of its inscribed circle
satisfy the relation

2.5.12 Let  be an equilateral triangle whose sides are of length .

(a) Find the exact value of the radius  of the circumscribed circle of .
(b) Find the exact value of the radius  of the inscribed circle of .
(c) How much larger is  than ?
(d) Show that the circumscribed and inscribed circles of  have the same center.

2.5.13 Let  be a right triangle with . Show that .
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a = 10 b = 11 c = 20.5

a = 5 b = 12 c = 13

△ABC

a = 2 b = 4 c = 5

a = 5 b = 6 c = 7

△ABC s = (a+b+c)1
2

tan A  =     ,     tan B  =     ,     tan C   =     .1
2

(s−b) (s−c)

s (s−a)

− −−−−−−−−−−−

√ 1
2

(s−a) (s−c)

s (s−b)

− −−−−−−−−−−−

√ 1
2

(s−a) (s−b)

s (s−c)

− −−−−−−−−−−−

√ (2.E.6)

△ABC R

R  =     .
abc

(a+b+c) (b+c−a) (a−b+c) (a+b−c)
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√
(2.E.7)

△ABC R r

rR  =     .
abc

2 (a+b+c)
(2.E.8)

△ABC a

R △ABC

r △ABC

R r

△ABC

△ABC C = 90∘ tan A =  1
2

c−b

c+b

−−−
√
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CHAPTER OVERVIEW
3: IDENTITIES

3.1: BASIC TRIGONOMETRIC IDENTITIES
Equations that are true for angles θ for which both sides of the equation are defined are called
identities. In this section we will discuss several identities involving the trigonometric functions
that are often used to simplify complicated expressions or equations.

3.2: SUM AND DIFFERENCE FORMULAS
We will now derive identities for the trigonometric functions of the sum and difference of two
angles.

3.3: DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
A special case of the addition formulas is when the two angles being added are equal, resulting in the double-angle formulas.

3.4: OTHER IDENTITIES
Though the identities in this section fall under the category of “other”, they are perhaps (along with ) the most
widely used identities in practice. It is very common to encounter terms such as  in calculations, so we
will now derive identities for those expressions.

3.E: IDENTITIES (EXERCISES)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for college
students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is taken than usual.
Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

cos
2

θ + sin
2

θ = 1

sin A +  sinB or  sin A cos B
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3.1: Basic Trigonometric Identities
So far we know a few relations between the trigonometric functions. For example, we know the reciprocal relations:

1.  when 

2.  when 

3.  when  is defined and not 

4.  when  is defined and not 

5.  when  is defined and not 

6.  when  is defined and not 

Notice that each of these equations is true for all angles  for which both sides of the equation are defined. Such equations are
called identities, and in this section we will discuss several trigonometric identities, i.e. identities involving the trigonometric
functions. These identities are often used to simplify complicated expressions or equations. For example, one of the most
useful trigonometric identities is the following:

To prove this identity, pick a point  on the terminal side of  a distance  from the origin, and suppose that 
. Then  (since ), so by definition

Note how we proved the identity by expanding one of its sides ( ) until we got an expression that was equal to the other
side ( ). This is probably the most common technique for proving identities. Taking reciprocals in the above identity
gives:

Figure 3.1.1

We will now derive one of the most important trigonometric identities. Let  be any angle with a point  on its terminal
side a distance  from the origin. By the Pythagorean Theorem,  (and hence ). For example,
if  is in QIII as in Figure 3.1.1, then the legs of the right triangle formed by the reference angle have lengths  and  (we
use absolute values because  and  are negative in QIII). The same argument holds if  is in the other quadrants or on either
axis. Thus,

csc θ  =  
1

sin θ
sin θ ≠ 0

sec θ  =  
1

cos θ
cos θ ≠ 0

cot θ  =  
1

tan θ
tan θ 0

sin θ  =  
1

csc θ
csc θ 0

cos θ  =  
1

sec θ
sec θ 0

tan θ  =  
1

cot θ
cot θ 0

θ

tan θ  =   when  cos θ ≠ 0
sin θ

cos θ
(3.1.1)

(x, y) θ r > 0

cos θ ≠ 0 x ≠ 0 cos θ = x
r

  =     =     =   tan θ .
sin θ

cos θ

   
y

r

   
x

r

y

x

sin θ

cos θ

tan θ

cot θ  =   when  sin θ ≠ 0
cos θ

sin θ
(3.1.2)

θ (x, y)

r > 0 = +r2 x2 y2 r = +x2 y2− −−−−−√
θ |x| |y|

x y θ

  =  |x   +  |y   =     +    ,r2 |2 |2 x2 y2
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so dividing both sides of the equation by  (which we can do since ) gives

Since , , and , we can rewrite this as:

You can think of this as sort of a trigonometric variant of the Pythagorean Theorem. Note that we use the notation  to
mean , likewise for cosine and the other trigonometric functions. We will use the same notation for other powers
besides .

From the above identity we can derive more identities. For example:

from which we get (after taking square roots):

Also, from the inequalities  and , taking square roots gives
us the following bounds on sine and cosine:

The above inequalities are not identities (since they are not equations), but they provide useful checks on calculations. Recall
that we derived those inequalities from the definitions of sine and cosine in Section 1.4.

In Equation , dividing both sides of the identity by  gives

so since  and , we get:

Likewise, dividing both sides of Equation  by  gives

so since  and , we get:

r2 r > 0

  =     =     +     =     +    .
r2

r2

  +  x2 y2

r2

x2

r2

y2

r2
( )
x

r

2

( )
y

r

2

= 1r2

r2 = cos θx
r = sin θ

y

r

θ  +   θ  =  1cos2 sin2 (3.1.3)

θsin2

(sin θ)2

2

θ  =  1  −   θsin2 cos2 (3.1.4)

θ  =  1  −   θcos2 sin2 (3.1.5)

sin θ  =   ± 1  −  θcos2− −−−−−−−−
√ (3.1.6)

cos θ  =   ± 1  −  θsin2− −−−−−−−−
√ (3.1.7)

0 ≤ θ = 1  −  θ ≤ 1sin2 cos2 0 ≤ θ = 1  −  θ ≤ 1cos2 sin2

−1  ≤   sin θ  ≤  1 (3.1.8)

−1  ≤   cos θ  ≤  1 (3.1.9)

3.1.3 θcos2

  +     =     ,
θcos2

θcos2

θsin2

θcos2

1

θcos2

tan θ = sin θ

cos θ
sec θ = 1

cos θ

1  +  θ  =   θtan2 sec2 (3.1.10)

3.1.3 θsin2

  +     =     ,
θcos2

θsin2

θsin2

θsin2

1

θsin2

cot θ = cos θ

sin θ
csc θ = 1

sin θ

θ  +  1  =   θcot2 csc2 (3.1.11)
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Simplify .

Solution

We can use Equation  to simplify:

Simplify .

Solution

We can use Equation  to simplify:

Prove that .

Solution

We will expand the left side and show that it equals the right side:

In the above example, how did we know to expand the left side instead of the right side? In general, though this technique does
not always work, the more complicated side of the identity is likely to be easier to expand. The reason is that, by its
complexity, there will be more things that you can do with that expression. For example, if you were asked to prove that

there would not be much that you could do with the right side of that identity; it consists of a single term ( ) that offers no
obvious means of expansion.

Prove that .

Solution

Example 3.1
θ  θcos2 tan2

3.1.5

θ  θ cos2 tan2 =   θ  ⋅  cos2 θsin2

θcos2

=   θsin2

Example 3.2
5 θ  +  4 θsin2 cos2

3.1.1

5 θ  +  4 θ sin2 cos2 =  5 θ  +  4 (1  −  θ)sin2 sin2

=  5 θ  +  4  −  4 θsin2 sin2

=   θ  +  4sin2

Example 3.3
tan θ  +   cot θ  =   sec θ  csc θ

tan θ+cot θ  =     +  
sin θ

cos θ

cos θ

sin θ

=   ⋅   +   ⋅
sin θ

cos θ

sin θ

sin θ

cos θ

sin θ

cos θ

cos θ

=  
θ  +   θsin2 cos2

cos θ  sin θ

=  
1

cos θ  sin θ

=     ⋅  
1

cos θ

1

sin θ
=   sec θ  csc θ

(by 3.1.1 and 3.1.2)

(multiply both fractions by 1)

(after getting a common denominator)

(by 3.1.3)

sec θ  −   sin θ  tan θ  =   cos θ ,

cos θ

Example 3.4

  =   csc θ  cot θ
1  +  θcot2

sec θ
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Of the two sides, the left side looks more complicated, so we will expand that:

When trying to prove an identity where at least one side is a ratio of expressions, cross-multiplying can be an effective
technique:

Prove that .

Solution

Cross-multiply and reduce both sides until it is clear that they are equal:

By  both sides of the last equation are indeed equal. Thus, the original identity holds.

Suppose that  and  for some angle  and some constants , , , and . Show that 
.

Solution

Multiply both sides of the first equation by  and the second equation by :

Now square each of the above equations then add them together to get:

Notice how  does not appear in our final result. The trick was to get a common coefficient ( ) for  and  so
that we could use . This is a common technique for eliminating trigonometric functions from
systems of equations.
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1  +   θcot2

sec θ
=  

θcsc2

sec θ

=  
csc θ  ⋅  

1

sin θ
1

cos θ

=   csc θ  ⋅  
cos θ

sin θ
=   csc θ  cot θ

(by 3.1.11)

(by 3.1.2)

  =   if and only if ad  =  bc
a

b

c

d

Example 3.6

  =  
1  +   sin θ

cos θ

cos θ

1  −  sin θ

(1  +   sin θ)(1  −   sin θ) 

1  −   θ sin2

=   cos θ  ⋅   cos θ

=   θcos2

3.1.5

Example 3.7
a cos θ = b c sin θ = d θ a b c d

= +a2c2 b2c2 a2d2

c a

ac cos θ 

ac sin θ 

=  bc

=  ad

(ac cos θ   +  (ac sin θ  )2 )2

(ac ( θ  +   θ)  )2 cos2 sin2

 a2c2

=  (bc   +  (ad)2 )2

=     + b2c2 a2d2

=     +  (by 3.1.3)b2c2 a2d2

θ ac cos θ sin θ

θ+ θ = 1cos2 sin2
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3.2: Sum and Difference Formulas
We will now derive identities for the trigonometric functions of the sum and difference of two angles. For the sum of any two
angles  and , we have the addition formulas:

To prove these, first assume that  and  are acute angles. Then  is either acute or obtuse, as in Figure 3.2.1. Note in
both cases that , since

Figure 3.2.1  for acute  and 

Thus,

and

So we have proved the identities for acute angles  and . It is simple to verify that they hold in the special case of 
. For general angles, we will need to use the relations we derived in Section 1.5 which involve adding or

subtracting :

These will be useful because any angle can be written as the sum of an acute angle (or ) and integer multiples of . For
example, , , , etc. So if we can prove that the identities hold when
adding or subtracting  to or from either  or , respectively, where  and  are acute or , then the identities will also

A B

sin (A +B)  =   sin A  cos B  +   cos A  sin B (3.2.1)

cos (A +B)  =   cos A  cos B  −   sin A  sin B (3.2.2)

A B A +B

∠ QP R = A

∠ QP R 

∠ QP R 

=  ∠ QP O −∠ OP M   =  ( −B) −( −(A +B))  =  A  in Figure 3.2.1(a), and90∘ 90∘

=  ∠ QP O +∠ OP M   =  ( −B) +( −( −(A +B)))  =  A  in Figure 3.2.1(b).90∘ 90∘ 180∘

sin(A + B) and  cos(A + B) A B

sin (A +B)  =     =     =     =     +  
MP

OP

MR +RP

OP

NQ +RP

OP

NQ

OP

RP

OP

=   ⋅   +   ⋅
NQ

OQ

OQ

OP

RP

P Q

P Q

OP

=   sin A  cos B  +   cos A  sin B , (3.2.3)

cos (A +B)  =     =     =     =     −  
OM

OP

ON −MN

OP

ON −RQ

OP

ON

OP

RQ

OP

=   ⋅   −   ⋅
ON

OQ

OQ

OP

RQ

P Q

P Q

OP

=   cos A  cos B  −   sin A  sin B . (3.2.4)

A B

A = B = 0∘

90∘

sin (θ + ) 90∘

cos (θ + ) 90∘

=   cos θ

=   −sin θ

sin (θ − ) 90∘

cos (θ − ) 90∘

=   −cos θ

=   sin θ

0∘ ±90∘

= +155∘ 65∘ 90∘ = +2( )222∘ 42∘ 90∘ − = −77∘ 13∘ 90∘

90∘ A B A B 0∘
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hold when repeatedly adding or subtracting , and hence will hold for all angles. Replacing  by  and using the
relations for adding  gives

so the identity holds for  and  (and, similarly, for  and ). Likewise,

so the identity holds for  and  (and, similarly, for  and ). Thus, the addition Equation  for sine holds
for all  and . A similar argument shows that the addition Equation  for cosine is true for all  and . QED

Replacing  by  in the addition formulas and using the relations  and  from Section
1.5 gives us the subtraction formulas:

Using the identity , and the addition formulas for sine and cosine, we can derive the addition formula for
tangent:

This, combined with replacing  by  and using the relation , gives us the addition and subtraction
formulas for tangent:

Given angles  and  such that , , , and , find the exact values of 
, , and .

Solution

90∘ A A +90∘

90∘

sin ((A + ) +B) 90∘ =   sin ((A +B) + )  =   cos (A +B) ,90∘

=   cos A  cos B  −   sin A  sin B  (by Equation 3.2.4)

=   sin (A + )  cos B  +   cos (A + )  sin B ,90∘ 90∘

A +90∘ B A B +90∘

sin ((A − ) +B) 90∘ =   sin ((A +B) − )  =   −cos (A +B) ,90∘

=   −(cos A  cos B  −   sin A  sin B)

=  (−cos A)  cos B  +   sin A  sin B

=   sin (A − )  cos B  +   cos (A − )  sin B ,90∘ 90∘

A −90∘ B A B +90∘ 3.2.1

A B 3.2.2 A B

B −B sin (−θ) = −sin θ cos (−θ) = cos θ

sin (A −B)  =   sin A  cos B  −   cos A  sin B (3.2.5)

cos (A −B)  =   cos A  cos B  +   sin A  sin B (3.2.6)

tan θ = sin θ

cos θ

tan (A +B)  =  
sin (A +B)

cos (A +B)

=  
sin A  cos B  +   cos A  sin B

cos A  cos B  −   sin A  sin B

=   (divide top and bottom by cos A  cos B)
  +  

sin A  cos B

cos A  cos B

cos A  sin B

cos A  cos B

  −  
cos A  cos B

cos A  cos B

sin A  sin B

cos A  cos B

=     =  

⋅   +   ⋅
sin A

cos A

cos B

cos B

cos A

cos A

sin B

cos B

1  −  ⋅
sin A

cos A

sin B

cos B

tan A  +   tan B

1  −  tan A  tan B

B −B tan (−θ) = −tan θ

tan (A +B)  =  
tan A  +   tan B

1  −  tan A  tan B
(3.2.7)

tan (A −B)  =  
tan A  −   tan B

1  +  tan A  tan B
(3.2.8)

Example 3.8
A B sin A = 4

5
cos A = 3

5
sin B = 12

13
cos B = 5

13

sin (A +B) cos (A +B) tan (A +B)
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Using the addition formula for sine, we get:

Using the addition formula for cosine, we get:

Instead of using the addition formula for tangent, we can use the results above:

Prove the following identity:

Solution

Treat  as  and use the addition formulas three times:

For any triangle , show that .

Solution

Note that this is not an identity which holds for all angles; since , , and  are the angles of a triangle, it holds when 
, ,   and . So using  and the relation 

from Section 1.5, we get:

sin (A +B)  =   sin A  cos B  +   cos A  sin B

=   ⋅   +   ⋅ ⇒
4

5

5

13

3

5

12

13
sin (A +B)  =  

56

65

cos (A +B)  =   cos A  cos B  −   sin A  sin B

=   ⋅   −   ⋅ ⇒
3

5

5

13

4

5

12

13
cos (A +B)  =   −

33

65

tan (A +B)  =     =   ⇒
sin (A +B)

cos (A +B)

56
65

− 33
65

tan (A +B)  =   −
56

33

Example 3.9

sin (A +B +C)  =   sin A  cos B  cos C + cos A  sin B  cos C + cos A  cos B  sin C − sin A  sin B  sin C

A +B +C (A +B) +C

sin (A +B +C)  =   sin ((A +B) +C)

=   sin (A +B)  cos C + cos (A +B)  sin C

=  (sin A  cos B + cos A  sin B)  cos C + (cos A  cos B − sin A  sin B)  sin C

=   sin A  cos B  cos C + cos A  sin B  cos C + cos A  cos B  sin C − sin A  sin B  sin C

Example 3.10
△ABC tan A +tan B +tan C = tan A  tan B  tan C

A B C

A B C > 0∘ A +B +C = 180∘ C = −(A +B)180∘ tan ( −θ) = −tan θ180∘
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Let , , , and  be positive angles such that . Show that

Solution

It may be tempting to expand the right side, since it appears more complicated. However, notice that the right side has no 
 term. So instead, we will expand the left side, since we can eliminate the  term on that side by using 

 and the relation

So since , we get

It may not be immediately obvious where to go from here, but it is not completely guesswork. We need to end up with 
, and we know that . There are two terms

involving , so group them together to get

tan A + tan B + tan C   =   tan A + tan B + tan ( −(A +B))180∘

=   tan A + tan B − tan (A +B)

=   tan A + tan B −
tan A +tan B

1 −tan A  tan B

=  (tan A + tan B) (1 − )
1

1 −tan A  tan B

=  (tan A + tan B) ( − )
1 −tan A  tan B

1 −tan A  tan B

1

1 −tan A  tan B

=  (tan A + tan B) ⋅ ( )
−tan A  tan B

1 −tan A  tan B

=   tan A  tan B ⋅ (− )
tan A + tan B

1 −tan A  tan B

=   tan A  tan B ⋅ (−tan (A +B))

=   tan A  tan B ⋅ (tan ( −(A +B)))180∘

=   tan A  tan B  tan C

Example 3.11
A B C D A +B +C +D = 180∘

sin A  sin B  +   sin C   sin D  =   sin (A +C)  sin (B +C) .

D D

D = −(A +B +C)180∘

sin ( −(A +B +C))  =   sin (A +B +C).180∘

sin D = sin (A +B +C)

sin A  sin B  +   sin C   sin D  =   sin A  sin B  +   sin C   sin (A +B +C) ,  so by Example 3.9 we get

=   sin A  sin B  +   sin C  (sin A  cos B  cos C + cos A  sin B  cos C

+ cos A  cos B  sin C − sin A  sin B  sin C)

=   sin A  sin B  +   sin C   sin A  cos B  cos C   +   sin C   cos A  sin B  cos C

+  sin C   cos A  cos B  sin C   −   sin C   sin A  sin B  sin C  .

sin (A +C)  sin (B +C) sin (B +C) = sin B  cos C +cos B  sin C

cos B  sin C

sin A  sin B  +   sin C   sin D  =   sin A  sin B  −   sin C   sin A  sin B  sin C   +   sin C   cos A  sin B  cos C

+  cos B  sin C  (sin A  cos C   +   cos A  sin C)

=   sin A  sin B (1 − C)  +   sin C   cos A  sin B  cos Csin2

+  cos B  sin C   sin (A +C)

=   sin A  sin B  C   +   sin C   cos A  sin B  cos Ccos2

+  cos B  sin C   sin (A +C) .
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We now have two terms involving , which we can factor out:

In the study of the propagation of electromagnetic waves, Snell's law gives the relation

where  is the angle of incidence at which a wave strikes the planar boundary between two mediums,  is the angle of
transmission of the wave through the new medium, and  and  are the indexes of refraction of the two mediums. The
quantity

is called the Fresnel coefficient for normal incidence reflection of the wave for s-polarization. Show that this can be
written as:

Solution

Multiply the top and bottom of  by  to get:

The last two examples demonstrate an important aspect of how identities are used in practice: recognizing terms which are part
of known identities, so that they can be factored out. This is a common technique.

Contributors and Attributions
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sin B  cos C

sin A  sin B  +   sin C   sin D  =   sin B  cos C  (sin A  cos C +cos A  sin C  )

+   cos B  sin C   sin (A +C)

=   sin B  cos C   sin (A +C)  +   cos B  sin C   sin (A +C)

=   sin (A +C) (sin B  cos C +cos B  sin C)

=   sin (A +C)  sin (B +C)

Example 3.12

  sin   =     sin  ,n1 θ1 n2 θ2 (3.2.9)

θ1 θ2

n1 n2

  =  r1 2 s

  cos   −     cosn1 θ1 n2 θ2

  cos   +     cosn1 θ1 n2 θ2
(3.2.10)

  =  r1 2 s

sin ( − )θ2 θ1

sin ( + )θ2 θ1

r1 2 s sin   sinθ1 θ2

 r1 2 s =   ⋅
  cos   −     cosn1 θ1 n2 θ2

  cos   +     cosn1 θ1 n2 θ2

sin   sinθ1 θ2

sin   sinθ1 θ2

=  
(   sin )  sin   cos   −  (   sin )  cos   sinn1 θ1 θ2 θ1 n2 θ2 θ2 θ1

(   sin )  sin   cos   +  (   sin )  cos   sinn1 θ1 θ2 θ1 n2 θ2 θ2 θ1

=   (by Snell's law)
(   sin )  sin   cos   −  (   sin )  cos   sinn1 θ1 θ2 θ1 n1 θ1 θ2 θ1

(   sin )  sin   cos   +  (   sin )  cos   sinn1 θ1 θ2 θ1 n1 θ1 θ2 θ1

=  
sin   cos   −   cos   sinθ2 θ1 θ2 θ1

sin   cos   +   cos   sinθ2 θ1 θ2 θ1

=  
sin ( − )θ2 θ1

sin ( + )θ2 θ1
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3.3: Double-Angle and Half-Angle Formulas
A special case of the addition formulas is when the two angles being added are equal, resulting in the double-angle formulas:

To derive the sine double-angle formula, we see that

Likewise, for the cosine double-angle formula, we have

and for the tangent we get

Using the identities  and , we get the following useful alternate forms for the
cosine double-angle formula:

sin 2θ 

cos 2θ 

tan 2θ 

=  2 sin θ  cos θ

=   θ  −   θcos2 sin2

=  
2 tan θ

1  −  θtan2

(3.3.1)

(3.3.2)

(3.3.3)

sin 2θ  =   sin (θ +θ)  =   sin θ  cos θ  +   cos θ  sin θ  =  2 sin θ  cos θ .

cos 2θ  =   cos (θ +θ)  =   cos θ  cos θ  −   sin θ  sin θ  =   θ  −   θ ,cos2 sin2

tan 2θ  =   tan (θ +θ)  =     =  
tan θ  +   tan θ

1  −  tan θ  tan θ

2 tan θ

1  −  θtan2

θ = 1 − θsin2 cos2
θ = 1 − θcos2 sin2

cos 2θ  =  2 θ  −  1cos2

=  1  − 2 θsin2

(3.3.4)

(3.3.5)

Using , the addition Equation for sine, and the double-angle Equations  and ,
we get:

3θ = 2θ + θ 3.3.1 3.3.5

sin 3θ  =   sin (2θ +θ)

=   sin 2θ  cos θ  +   cos 2θ  sin θ

=  (2 sin θ  cos θ) cos θ  +  (1 −2 θ) sin θsin2

=  2 sin θ  θ  +   sin θ  −  2 θcos2 sin3

=  2 sin θ (1 − θ)  +   sin θ  −  2 θsin2 sin3

=  3 sin θ  −  4 θsin3

Expand the right side and use :1 + z = ztan2 sec2

 
4 tan z (1 − z)tan2

(1 + ztan2 )2
=  

4 ⋅ ⋅ ( − )
sin z

cos z

zcos2

zcos2

zsin2

zcos2

( zsec2 )2

=   (by Equation 3.3.2)

4 ⋅ ⋅
sin z

cos z

cos 2z

zcos2

( )
1

zcos2

2

=  (4 sin z  cos 2z) cos z

=  2 (2 sin z  cos z) cos 2z

=  2 sin 2z  cos 2z (by Equation 3.3.1)

=   sin 4z (by Equation 3.3.1 with θ replaced by 2z)
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Note: Perhaps surprisingly, this seemingly obscure identity has found a use in physics, in the derivation of a solution of
the sine-Gordon equation in the theory of nonlinear waves

Closely related to the double-angle formulas are the half-angle formulas:

These formulas are just the double-angle formulas rewritten with  replaced by :

The tangent half-angle Equation then follows easily:

The half-angle formulas are often used (e.g. in calculus) to replace a squared trigonometric function by a nonsquared function,
especially when  is used instead of .

By taking square roots, we can write the above formulas in an alternate form:

In the above form, the sign in front of the square root is determined by the quadrant in which the angle  is located. For
example, if  then  is in QII. So in this case  and hence we would have 

.

In Equation , multiplying the numerator and denominator inside the square root by  gives

But , and it turns out (see Exercise 10) that  and  always have the same sign. Thus, the minus sign
in front of the last expression is not possible (since that would switch the signs of  and ), so we have:

Multiplying the numerator and denominator in Equation  by  gives

θ sin2 1
2

θ cos2 1
2

θ tan2 1
2

=  
1 − cos θ

2

=  
1 + cos θ

2

=  
1 − cos θ

1 + cos θ

(3.3.6)

(3.3.7)

(3.3.8)

θ θ
1
2

cos 2θ

cos 2θ

= 1 − 2 θ  ⇒   θ =   ⇒   θ = =sin2 sin2 1 − cos 2θ

2
sin2 1

2

1 − cos 2 ( θ)1
2

2

1 − cos θ

2

= 2 θ − 1  ⇒   θ =   ⇒   θ = =cos2 cos2 1 + cos 2θ

2
cos2 1

2

1 + cos 2 ( θ)1
2

2

1 + cos θ

2

θ = = = =tan2 1
2

( )
sin θ

1
2

cos θ
1
2

2
θsin2 1

2

θcos2 1
2

1 − cos θ

2

1 + cos θ

2

1 − cos θ

1 + cos θ

2θ θ

sin θ 1
2

cos θ 1
2

tan θ 1
2

=   ±
1 − cos θ

2

− −−−−−−−−
√

=   ±
1 + cos θ

2

− −−−−−−−−
√

=   ±
1 − cos θ

1 + cos θ

− −−−−−−−−
√

(3.3.9)

(3.3.10)

(3.3.11)

θ
1
2

θ = 300∘
θ =1

2
150∘ cos θ < 01

2

cos θ = −1
2

1 + cos θ

2

− −−−−−−
√

3.3.11 (1 −cos θ)

tan θ  =   ±   =   ±   =   ±   =   ±  .1
2

⋅
1 −cos θ

1 +cos θ

1 −cos θ

1 −cos θ

− −−−−−−−−−−−−−−−−−
√

(1 −cos θ)2

1 − θcos2

− −−−−−−−−−

√
(1 −cos θ)2

θsin2

− −−−−−−−−−

√
1 −cos θ

sin θ

1 −cos θ ≥ 0 tan θ
1
2

sin θ

tan θ
1
2

sin θ

tan θ  =  1
2

1 − cos θ

sin θ
(3.3.12)

3.3.12 1 +cos θ
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so we also get:

Taking reciprocals in Equations  and  gives:

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

tan θ  =   ⋅   =     =    ,1
2

1 − cos θ

sin θ

1 + cos θ

1 + cos θ

1 − θcos2

sin θ (1 + cos θ)

θsin2

sin θ (1 + cos θ)

tan θ  =  1
2

sin θ

1 + cos θ
(3.3.13)

3.3.12 3.3.13

cot θ  =     =  1
2

sin θ

1 − cos θ

1 + cos θ

sin θ
(3.3.14)

Since secant is the reciprocal of cosine, taking the reciprocal of Equation  for  gives
us

3.3.7 θcos2 1
2

θ  =     =   ⋅   =    .sec2 1
2

2

1 + cos θ

2

1 + cos θ

sec θ

sec θ

2 sec θ

sec θ + 1

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3287?pdf
http://www.mecmath.net/trig/index.html
http://www.gnu.org/copyleft/fdl.html


Michael Corral 3/4/2021 3.4.1
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3288

3.4: Other Identities
Though the identities in this section fall under the category of "other'', they are perhaps (along with ) the
most widely used identities in practice. It is very common to encounter terms such as  or  in
calculations, so we will now derive identities for those expressions. First, we have what are often called the product-to-sum
formulas:

We will prove the first formula; the proofs of the others are similar (see Exercises 1-3). We see that

so Equation  follows upon dividing both sides by . Notice how in each of the above identities a product (e.g. 
) of trigonometric functions is shown to be equivalent to a sum (e.g. ) of such

functions. We can go in the opposite direction, with the sum-to-product formulas:

These formulas are just the product-to-sum formulas rewritten by using some clever substitutions: let  and 
. Then  and . For example, to derive Equation , make the above substitutions in

Equation  to get

The proofs of the other sum-to-product formulas are similar (see Exercises 4-6).

First, since , by the double-angle formula we have . Thus,

θ + θ = 1cos2 sin2

sin A +sin B sin A  cos B

sin A  cos B 

cos A  sin B 

cos A  cos B 

sin A  sin B 

=   (sin (A +B)  +   sin (A −B))1
2

=   (sin (A +B)  −   sin (A −B))1
2

=   (cos (A +B)  +   cos (A −B))1
2

=   − (cos (A +B)  −   cos (A −B))1
2

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

sin (A +B)  +   sin (A −B)  =  (sin A  cos B  +   )  +  (sin A  cos B  −   )cos A  sin B cos A  sin B

=  2 sin A  cos B ,

3.4.1 2

sin A  cos B (sin (A +B)  +   sin (A −B))1
2

sin A  +   sin B 

sin A  −   sin B 

cos A  +   cos B 

cos A  −   cos B 

=   2 sin (A +B)  cos (A −B)1
2

1
2

=   2 cos (A +B)  sin (A −B)1
2

1
2

=   2 cos (A +B)  cos (A −B)1
2

1
2

=   −2 sin (A +B)  sin (A −B)1
2

1
2

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

x = (A +B)1
2

y = (A −B)1
2

x +y = A x −y = B 3.4.7

3.4.3

cos A  +   cos B  =   cos (x +y)  +   cos (x −y)

=  2 ⋅ (cos (x +y)  +   cos (x −y))1
2

=  2 cos x  cos y (by Equation 3.4.3)

=  2 cos (A +B)  cos (A −B) .1
2

1
2

We are now in a position to prove Mollweide's equations, which we introduced in Section 2.3: For
any triangle ,△ABC

  =   and   =    .
a −b

c

sin (A −B)1
2

cos C1
2

a +b

c

cos (A −B)1
2

sin C1
2

C = 2 ⋅ C1
2

sin C = 2 sin C   cos C1
2

1
2
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This proves the first equation. The proof of the other equation is similar (see Exercise 7).

We need only prove the first equation; the other two are obtained by cycling through the letters. We see that

For any triangle , show that

Solution

Since , we can rewrite the left side as

 
a −b

c
=     −    =     −   (by the Law of Sines)

a

c

b

c

sin A

sin C

sin B

sin C

=     =  
sin A  −   sin B

sin C

sin A  −   sin B

2 sin C   cos C1
2

1
2

=   (by Equation 3.4.6)
2 cos (A +B)  sin (A −B)1

2
1
2

2 sin C   cos C1
2

1
2

=   (since A +B = −C)
cos ( −C)  sin (A −B)1

2
180∘ 1

2

sin C   cos C1
2

1
2

180∘

=  
  sin (A −B)cos ( − C)90∘ 1

2
1
2

  cos Csin C1
2

1
2

=   (since  cos ( − C) = sin C) .
sin (A −B)1

2

cos C1
2

90∘ 1
2

1
2

Using Mollweide's equations, we can prove the Law of Tangents: For any triangle ,△ABC

  =    ,   =    ,   =    .
a −b

a +b

tan (A −B)1
2

tan (A +B)1
2

b −c

b +c

tan (B −C)1
2

tan (B +C)1
2

c −a

c +a

tan (C −A)1
2

tan (C +A)1
2

 
a −b

a +b
=     =   (by Mollweide's equations)

a −b

c

a +b

c

sin (A −B)1
2

cos C1
2

cos (A −B)1
2

sin C1
2

=   ⋅
sin (A −B)1

2

cos (A −B)1
2

sin C1
2

cos C1
2

=   tan (A −B) ⋅ tan C   =   tan (A −B) ⋅ tan ( − (A +B)) (since C = −(A +B))1
2

1
2

1
2

90∘ 1
2

180∘

=   tan (A −B) ⋅ cot (A +B) (since tan ( − (A +B)) = cot (A +B), see Section 1.5)1
2

1
2

90∘ 1
2

1
2

=    . QED
tan (A −B)1

2

tan (A +B)1
2

Example 3.18
△ABC

cos A  +   cos B  +   cos C   =  1  +  4 sin A  sin B  sin C  .1
2

1
2

1
2

cos (A +B +C) = cos = −1180∘

cos A + cos B + cos C   =  1 + (cos (A +B +C) + cos C) + (cos A + cos B)  , so by Equation 3.4.7

=  1 + 2 cos (A +B +2C)  cos (A +B) + 2 cos (A +B)  cos (A −B)1
2

1
2

1
2

1
2

=  1 + 2 cos (A +B) (cos (A +B +2C) + cos (A −B))   , so1
2

1
2

1
2

=  1 + 2 cos (A +B) ⋅ 2 cos (A +C)  cos (B +C)  by Equation 3.4.7,1
2

1
2

1
2
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since  and . Thus,}

since , as we saw in Example 3.18. Multiply both sides by  to get

after rearranging the terms. Notice that the expression above is a quadratic equation in the term . So by
the quadratic formula,

which has a real solution only if the quantity inside the square root is nonnegative. But we know that  is a
real number (and, hence, a solution exists), so we must have

For any triangle , show that .

Solution

Since , the sines of , , and  are all positive, so

by Example 3.18. Also, by Examples 3.18 and 3.19 we have

Hence, .

Solution

Multiply the top and bottom of  by  to get:

( (A +B +2C) + (A −B)) = (A +C)1
2

1
2

1
2

1
2

( (A +B +2C) − (A −B)) = (B +C)1
2

1
2

1
2

1
2

cos A + cos B + cos C   =  1 + 4 cos ( − C)  cos ( − B)  cos ( − A)90∘ 1
2

90∘ 1
2

90∘ 1
2

=  1 + 4 sin C   sin B  sin A  ,  so rearranging the order gives1
2

1
2

1
2

=  1 + 4 sin A  sin B  sin C  .1
2

1
2

1
2

Let . Apply Equation  to the first two terms in  to getu = sin A  sin B  sin C1
2

1
2

1
2

3.4.4 u

u  =   − (cos (A +B) − cos (A −B))  sin C   =   (cos (A −B) − cos (A +B))  cos (A +B) ,1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

sin C = cos (A +B)1
2

1
2

2

(A +B)  −   cos (A −B)  cos (A +B)  +  2u  =  0 ,cos2 1
2

1
2

1
2

cos (A +B)1
2

cos (A +B)  =     ,1
2

cos (A −B) ±1
2

(A −B) −4(1)(2u)cos2 1
2

− −−−−−−−−−−−−−−−−−−−−
√

2

cos (A +B)1
2

(A −B) − 8u  ≥  0 ⇒ u  ≤   (A −B)  ≤   ⇒ sin A  sin B  sin C   ≤    .cos2 1
2

1
8

cos2 1
2

1
8

1
2

1
2

1
2

1
8

Example 3.20
△ABC 1  <   cos A +cos B +cos C   ≤   3

2

< A, B, C <0∘ 180∘ A1
2

B1
2

C1
2

cos A + cos B + cos C   =  1 + 4 sin A  sin B  sin C   >  11
2

1
2

1
2

cos A + cos B + cos C   =  1 + 4 sin A  sin B  sin C   ≤  1 + 4 ⋅   =    .1
2

1
2

1
2

1
8

3
2

1  <   cos A +cos B +cos C   ≤   3
2

can be written as:

  =    .t1 2 p

2 cos   sinθ1 θ2

sin ( + )  cos ( − )θ1 θ2 θ1 θ2

t1 2 p sin   sinθ1 θ2
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for some constants , , , and . Show that the instantaneous power can be written as

Solution

By definition of , we have

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

 t1 2 p =   ⋅
2   cosn1 θ1

  cos   +     cosn2 θ1 n1 θ2

sin   sinθ1 θ2

sin   sinθ1 θ2

=  
2 (   sin )  cos   sinn1 θ1 θ1 θ2

(   sin )  sin   cos   +  (   sin )  sin   cosn2 θ2 θ1 θ1 n1 θ1 θ2 θ2

=   (by Snell's law)
2 cos   sinθ1 θ2

sin   cos   +   sin   cosθ1 θ1 θ2 θ2

=   (by the double-angle formula)
2 cos   sinθ1 θ2

(sin 2   +   sin 2 )1
2

θ1 θ2

=   (by formula 3.4.5)
2 cos   sinθ1 θ2

(2 sin (2 +2 )  cos (2 −2 ))1
2

1
2

θ1 θ2
1
2

θ1 θ2

=  
2 cos   sinθ1 θ2

sin ( + )  cos ( − )θ1 θ2 θ1 θ2

 are given byi(t)

v(t) 

i(t) 

=   cos ωt ,Vm

=   cos (ωt +ϕ) ,Im

Vm Im ω ϕ

p(t)  =   cos ϕ  +   cos (2ωt +ϕ) .1
2

Vm Im
1
2

Vm Im

p(t)

p(t)  =   cos ωt  cos (ωt +ϕ)Vm Im

=   ⋅ (cos (2ωt +ϕ) + cos (−ϕ))Vm Im
1
2

=   cos ϕ  +   cos (2ωt +ϕ)1
2

Vm Im
1
2

Vm Im

(by Equation 3.4.3)

(since cos (−ϕ) = cos ϕ) .
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3.E: Identities (Exercises)

3.1 Exercises
3.1.1 We showed that  for all . Give an example of an angle  such that 

.

3.1.2 We showed that  for all . Give an example of an angle  such that 
.

3.1.3 Suppose that you are given a system of two equations of the following form:

Show that .

For Exercises 4-16, prove the given identity.

3.1.4 

3.1.5 

3.1.6 

3.1.7 

3.1.8 

3.1.9 

3.1.10 

3.1.11 

3.1.12 

3.1.13 

3.1.14 

3.1.15 

sin θ  =   ± 1  −  θcos2
− −−−−−−−−

√ θ θ

sin θ  =   − 1  −  θcos2
− −−−−−−−−

√

cos θ  =   ± 1  −  θsin2− −−−−−−−−√ θ θ

cos θ  =   − 1  −  θsin2− −−−−−−−−
√

A cos ϕ 
A sin ϕ 

=  B   −  B cos θν1 ν2

=  B sin θ .ν2

  =   (   +     −  2 cos θ )A2 B2 ν2
1 ν2

2 ν1ν2

cos θ  tan θ  =   sin θ

sin θ  cot θ  =   cos θ

  =   θ
tan θ

cot θ
tan2

  =   θ
csc θ

sin θ
csc2

  =  1  −   sin θ
θcos2

1  +  sin θ

  =   tan θ  −   cot θ
1  − 2 θcos2

sin θ  cos θ

θ  −   θ  =   θ  −   θsin4 cos4 sin2 cos2

θ  −   θ  =  1  −  2 θcos4 sin4 sin2

  =  
1  −   tan θ

1  +  tan θ

cot θ  −  1

cot θ  +  1

  =   tan θ  tan ϕ
tan θ  +   tan ϕ

cot θ  +   cot ϕ

  =   θ
θsin2

1  −  θsin2
tan2

  =  1  −   θ
1  −  θtan2

1  −  θcot2
sec2
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3.1.16  (Hint: Solve for  in Exercise 14.)

3.1.17 Sometimes identities can be proved by geometrical methods. For example, to prove the identity in Exercise 16, draw an
acute angle  in QI and pick the point  on its terminal side, as in Figure 3.1.2. What must  equal? Use that to prove the
identity for acute . Explain the adjustment(s) you would need to make in Figure 3.1.2 to prove the identity for  in the other
quadrants. Does the identity hold if  is on either axis?

Figure 3.1.2

3.1.18 Similar to Exercise 16 , find an expression for  solely in terms of .

3.1.19 Find an expression for  solely in terms of , and one solely in terms of .

3.1.20 Suppose that a point with coordinates  is a distance  from the origin,
where  and . Use  to show that .\\(Note: These coordinates arise in the
study of elliptical orbits of planets.)

3.1.21 Show that each trigonometric function can be put in terms of the sine function.

3.2 Exercises
3.2.1 Verify the addition formulas 3.12 and 3.13 for .

For Exercises 2 and 3, find the exact values of , , and .

3.2.2 , , ,

3.2.3 , , ,

3.2.4 Use  to find the exact value of .

3.2.5 Use  to find the exact value of .

3.2.6 Prove the identity . Explain why this shows that

for all angles . For which  between  and  would  be the largest?

For Exercises 7-14, prove the given identity.

3.2.7

sin θ  =   ±
tan θ

1  +  θtan2
− −−−−−−−−−

√
θsin2

θ (1, y) y

θ θ

θ

cos θ tan θ

tan θ sin θ cos θ

(x, y) = (a (cos ψ − ϵ), a   sin ψ)1 − ϵ2
− −−−−

√ r > 0
a > 0 0 < ϵ < 1 = +r2 x2 y2 r = a (1 − ϵ cos ψ)

A = B = 0∘

sin (A +B) cos (A +B) tan (A +B)

sin A = 8
17

cos A = 15
17

sin B = 24
25

cos B = 7
25

sin A = 40
41

cos A = 9
41

sin B = 20
29

cos B = 21
29

= +75∘ 45∘ 30∘ sin 75∘

= −15∘ 45∘ 30∘ tan 15∘

sin θ +cos θ = sin (θ + )2
–

√ 45∘

−   ≤   sin θ  +   cos θ  ≤  2
–

√ 2
–

√

θ θ 0∘ 360∘ sin θ + cos θ
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3.2.8 

3.2.9 

3.2.10 

3.2.11 

3.2.12 

3.2.13 

3.2.14 

3.2.15 Generalize Exercise 6: For any  and ,  for all .

3.2.16 Continuing Example 3.12, use Snell's law to show that the s-polarization transmission Fresnel coefficient

can be written as:

3.2.17 Suppose that two lines with slopes  and , respectively, intersect at an angle  and are not perpendicular (i.e. 
), as in the figure on the right. Show that

(Hint: Use Example 1.26 from Section 1.5.)

3.2.18 Use Exercise 17 to find the angle between the lines  and .

cos (A +B +C) = cos A  cos B  cos C − cos A  sin B  sin C − sin A  cos B  sin C − sin A  sin B  cos C

tan (A +B +C)  =  
tan A + tan B + tan C − tan A  tan B  tan C

1 − tan B  tan C − tan A  tan C − tan A  tan B

cot (A +B)  =  
cot A  cot B − 1

cot A + cot B

cot (A −B)  =  
cot A  cot B + 1

cot B − cot A

tan (θ + )  =  45∘ 1 + tan θ

1 − tan θ

  =   cot A − tan B
cos (A +B)

sin A  cos B

cot A  +   cot B  =  
sin (A +B)

sin A  sin B

  =  
sin (A −B)

sin (A +B)

cot B − cot A

cot B + cot A

a b − ≤ a sin θ + b cos θ ≤+a2 b2
− −−−−−

√ +a2 b2
− −−−−−

√ θ

  =  t1 2 s

2   cosn1 θ1

  cos   +     cosn1 θ1 n2 θ2
(3.22)

  =  t1 2 s

2 cos   sinθ1 θ2

sin ( + )θ2 θ1

m1 m2 θ

θ ≠ 90∘

tan θ  =    .
∣
∣
∣

  −  m1 m2

1  + m1 m2

∣
∣
∣

y = 2x +3 y = −5x −4
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3.2.19 For any triangle , show that .
(Hint: Use Exercise 9 and .)

3.2.20 For any positive angles , , and  such that , show that

3.2.21 Prove the identity . Note that the right side depends only on 
, while the left side depends on both  and .

3.2.22 A line segment of length  from the origin to the point  makes an angle  with the positive -axis, so that 
, as in the figure below. What are the endpoint's new coordinates  after a counterclockwise

rotation by an angle ? Your answer should be in terms of , , and .

3.3 Exercises
For Exercises 1-8, prove the given identity.

3.3.1 

3.3.2 

3.3.3 

3.3.4 

3.3.5 

3.3.6 

3.3.7 

3.3.8 

3.3.9 Some trigonometry textbooks used to claim incorrectly that  was an identity. Give
an example of a specific angle  that would make that equation false. Is  an identity?
Justify your answer.

△ABC cot A  cot B  +   cot B  cot C   +   cot C   cot A  =  1
C = −(A +B)180∘

A B C A +B +C = 90∘

tan A  tan B  +   tan B  tan C   +   tan C   tan A  =  1 .

sin (A +B)  cos B  −   cos (A +B)  sin B  =   sin A

A A B

r > 0 (x, y) α x

(x, y) = (r cos α, r sin α) ( , )x′ y′

β r α β

cos 3θ  =  4 θ  −  3 cos θcos3

tan θ  =   csc θ  −   cot θ1
2

  −     =   sec θ
sin 2θ

sin θ

cos 2θ

cos θ

  −     =  2
sin 3θ

sin θ

cos 3θ

cos θ

tan 2θ  =  
2

cot θ − tan θ

tan 3θ  =  
3 tan θ − θtan3

1 − 3 θtan2

θ  =  tan2 1
2

tan θ − sin θ

tan θ + sin θ

  =  
ψcos2

θcos2

1 + cos 2ψ

1 + cos 2θ

sin θ  +   cos θ  =   1 + sin 2θ
− −−−−−−−−

√
θ sin θ  +   cos θ  =   ± 1 + sin 2θ

− −−−−−−−−
√
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3.3.10 Fill out the rest of the table below for the angles  in increments of , showing , , and the signs (
or ) of  and .

3.3.11 In general, what is the largest value that  can take? Justify your answer.

For Exercises 12-17, prove the given identity for any right triangle  with .

3.3.12 

3.3.13 

3.3.14 

3.3.15 

3.3.16 

3.3.17 

3.3.18 Continuing Exercise 20 from Section 3.1, it can be shown that

where  and  are always in the same quadrant. Show that .

3.4 Exercises
3.4.1 Prove formula 3.38.

3.4.2 Prove formula 3.39.

3.4.3 Prove formula 3.40.

3.4.4 Prove formula 3.41.

3.4.5 Prove formula 3.42.

3.4.6 Prove formula 3.44.

3.4.7 Prove Mollweide's second equation: For any triangle , .

3.4.8 Continuing Example 3.21, use Snell's law to show that the p-polarization reflection Fresnel coefficient

< θ <0∘ 720∘ 90∘ θ θ1
2

+

− sin θ tan θ1
2

sin θ  cos θ

△ABC C = 90∘

sin (A −B)  =   cos 2B

cos (A −B)  =   sin 2A

sin 2A  =  
2 ab

c2

cos 2A  =  
−b2 a2

c2

tan 2A  =  
2 ab

−b2 a2

tan A  =     =  1
2

c −b

a

a

c +b

r (1 − cos θ) 

r (1 + cos θ) 

=  a (1 + ϵ) (1 − cos ψ) ,  and

=  a (1 − ϵ) (1 + cos ψ) ,

θ ψ tan θ  =     tan ψ1
2

1 + ϵ

1 − ϵ

− −−−
√ 1

2

△ABC     =  
a +b

c

cos (A −B)1
2

sin C1
2
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can be written as:

3.4.9 There is a more general form for the instantaneous power  in an electrical circuit than the one in
Example 3.22. The voltage  and current  can be given by

where  is called the phase angle. Show that  can be written as

For Exercises 10-15, prove the given identity or inequality for any triangle .

3.4.10  (Hint: Mimic Example 3.18 using 
.)

3.4.11 

3.4.12  (Hints: Group  and  together, use the
double-angle formula for , use Exercise 11.)

3.4.13 

3.4.14  and , \;where  (Hint: Use the Law of

Cosines to show that .)

3.4.15  (Hint: Show that .)

3.4.16 In Example 3.20, which angles , ,  give the maximum value of ?

  =  r1 2 p

  cos   −     cosn2 θ1 n1 θ2

  cos   +     cosn2 θ1 n1 θ2
(3.46)

  =  r1 2 p

tan ( − )θ1 θ2

tan ( + )θ1 θ2
(3.E.1)

p(t) = v(t) i(t)
v(t) i(t)

v(t) 

i(t) 

=   cos (ωt +θ) ,Vm

=   cos (ωt +ϕ) ,Im

θ p(t)

p(t)  =   cos (θ −ϕ)  +   cos (2ωt +θ +ϕ) .1
2

Vm Im
1
2

Vm Im (3.E.2)

△ABC

sin A + sin B + sin C   =  4 cos A  cos B  cos C1
2

1
2

1
2

(sin A + sin B) + (sin C − sin (A +B +C))

cos A + cos (B −C)  =  2 sin B  sin C

sin 2A + sin 2B + sin 2C   =  4 sin A  sin B  sin C sin 2B sin 2C

sin 2A

  =  
a −b

a +b

sin A − sin B

sin A + sin B

cos A  =     1
2

s (s −a)

bc

− −−−−−−−
√    sin A  =  1

2

(s −b) (s −c)

bc

− −−−−−−−−−−−
√ s = (a +b +c)$1

2

2bc (1 +cos A)  =  4s (s −a)

(sin A + sin B)  ≤   sin (A +B)1
2

1
2

sin (A +B) − (sin A + sin B) ≥ 01
2

1
2

A B C cos A + cos B + cos C
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CHAPTER OVERVIEW
4: RADIAN MEASURE

4.1: RADIANS AND DEGREES
So far we have been using degrees as our unit of measurement for angles. However, there is
another way of measuring angles that is often more convenient. The idea is simple: associate a
central angle of a circle with the arc that it intercepts.

4.2: ARC LENGTH
So suppose that we have a circle of radius r and we place a central angle with radian measure 1 on
top of another central angle with radian measure 1, as in Figure 4.2.1(a). Clearly, the combined
central angle of the two angles has radian measure 1+1 = 2, and the combined arc length is r + r =
2r.

4.3: AREA OF A SECTOR
In geometry you learned that the area of a circle of radius  is  . We will now learn how to find the area of a sector of a circle. A
sector is the region bounded by a central angle and its intercepted arc, such as the shaded region in Figure 4.3.1.

4.4: CIRCULAR MOTION- LINEAR AND ANGULAR SPEED
So suppose that an object moves along a circle of radius r, traveling a distance s over a period of time t, as in Figure 4.4.1. Then it
makes sense to define the (average) linear speed ν of the object as: . Let θ be the angle swept out by the object in that period of

time. Then we define the (average) angular speed ω of the object as: .

4.E: RADIAN MEASURE (EXERCISES)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for college
students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is taken than usual.
Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

r πr2

v =
s

t

ω =
θ

t
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4.1: Radians and Degrees

Figure 4.1.1 Angle  and intercepted arc  on circle of circumference 

In Figure 4.1.1 we see that a central angle of  cuts off an arc of length , a central angle of  cuts off an arc of length 
, and a central angle of  cuts off an arc of length , which is the same as the circumference of the circle. So

associating the central angle with its intercepted arc, we could say, for example, that

The radius  was arbitrary, but the  in front of it stays the same. So instead of using the awkward "radiuses'' or "radii'', we
use the term radians:

The above relation gives us any easy way to convert between degrees and radians:

Equation  follows by dividing both sides of Equation  by , so that  radians, then multiplying
both sides by . Equation  is similarly derived by dividing both sides of Equation  by  then multiplying both sides
by .

The statement  radians is usually abbreviated as  rad, or just  when it is clear that we are using radians.
When an angle is given as some multiple of , you can assume that the units being used are radians.

Convert  to radians.

Solution

Using the conversion Equation  for degrees to radians, we get

Convert  radians to degrees.

Solution

Using the conversion Equation  for radians to degrees, we get

θ AB

 

C = 2πr

90∘
r

π

2
180∘

π r 360∘ 2π r

"equals'' 2π r (or 2π 'radiuses').360∘

r 2π

  =  2π  radians360∘ (4.1.1)

Degrees to radians:

Radians to degrees:

x  degrees

x  radians

= ( ⋅ x)   radians
π

180

= ( ⋅ x)   degrees
180

π

(4.1.2)

(4.1.3)

4.1.2 4.1.1 360 = =1∘ 2π

360
π

180

x 4.1.3 4.1.1 2π

x

θ = 2π θ = 2π θ = 2π

π

Example 4.1
18∘

4.1.2

  =   ⋅ 18  =    .18∘ π

180
  rad

π

10

Example 4.2
π

9

4.1.3

  rad  =   ⋅   =    .
π

9

180

π

π

9
20∘
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Table 4.1 Commonly used angles in radians

Table 4.1 shows the conversion between degrees and radians for some common angles. Using the conversion Equation 
for radians to degrees, we see that

Figure 4.1.2

Formally, a radian is defined as the central angle in a circle of radius  which intercepts an arc of length , as in Figure 4.1.2.
This definition does not depend on the choice of  (imagine resizing Figure 4.1.2).

One reason why radians are used is that the scale is smaller than for degrees. One revolution in radians is ,
which is much smaller than , the number of degrees in one revolution. The smaller scale makes the graphs of trigonometric
functions (which we will discuss in Chapter 5) have similar scales for the horizontal and vertical axes. Another reason is that
often in physical applications the variables being used are in terms of arc length, which makes radians a natural choice.

The default mode in most scientific calculators is to use degrees for entering angles. On many calculators there is a button
labeled  for switching between degree mode (D), radian mode (R), and gradian mode (G). On some graphing
calculators, such as the the TI-83, there is a  button for changing between degrees and radians. Make sure that your
calculator is in the correct angle mode before entering angles, or your answers will likely be way off. For example,

so the values are not only off in magnitude, but do not even have the same sign. Using your calculator's , , and 
 buttons in radian mode will of course give you the angle as a decimal, not an expression in terms of .

You should also be aware that the math functions in many computer programming languages use radians, so you would have
to write your own angle conversions.
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1  radian   =      degrees   ≈     .
180

π
57.3∘

r r

r

2π ≈ 6.283185307

360

DRG

MODE

sin  4∘

sin (4 rad) 

=   0.0698 ,

=   −0.7568 ,

sin−1 cos−1

tan−1 π
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4.2: Arc Length
In Section 4.1 we saw that one revolution has a radian measure of  rad. Note that  is the ratio of the circumference (i.e.
total arc length)  of a circle to its radius :

Clearly, that ratio is independent of . In general, the radian measure of an angle is the ratio of the arc length cut off by the
corresponding central angle in a circle to the radius of the circle, independent of the radius.

Figure 4.2.1 Radian measure and arc length

Now suppose that we cut the angle with radian measure  in half, as in Figure 4.2.1(b). Clearly, this cuts the arc length  in
half as well. Thus, we see that

and in general, for any ,

so that

Intuitively, it is obvious that shrinking or magnifying a circle preserves the measure of a central angle even as the radius
changes. The above discussion says more, namely that the ratio of the length  of an intercepted arc to the radius  is
preserved, precisely because that ratio is the measure of the central angle in radians (see Figure 4.2.2).

Figure 4.2.2 Circles with the same central angle, different radii

We thus get a simple formula for the length of an arc:

2π 2π

C r

Radian measure of 1 revolution  =  2π  =     =     =  
2π r

r

C

r

total arc length

radius

r

1 r

Angle 

Angle 

Angle 

=  1 radian

=  2 radians

=    radian1
2

⇒ arc length 

⇒ arc length 

⇒ arc length 

=  r ,

=  2 r ,

=   r ,1
2

θ ≥ 0

Angle  =  θ radians ⇒ arc length  =  θ r ,

θ  =     .
arc length

radius

s r
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In a circle of radius , let  be the length of an arc intercepted by a central angle with radian measure . Then the arc
length  is:

Note that since the arc length  and radius  are usually given in the same units, radian measure is really unitless, since you
can think of the units canceling in the ratio , which is just . This is another reason why radians are so widely used.

For central angles  rad, i.e. , it may not be clear what is meant by the intercepted arc, since the angle is larger
than one revolution and hence "wraps around'' the circle more than once. We will take the approach that such an arc consists of
the full circumference plus any additional arc length determined by the angle. In other words, Equation  is still valid for
angles  rad.

What about negative angles? In this case using  would mean that the arc length is negative, which violates the usual
concept of length. So we will adopt the convention of only using nonnegative central angles when discussing arc length.

Figure 4.2.3

Solution:

We see that, by symmetry, the total length of the rope is . Also, notice that  is a right
triangle, so the hypotenuse has length  ft, by the Pythagorean Theorem. Now
since  is tangent to the circular container, we know that  is a right angle. So by the Pythagorean Theorem we
have

r s θ ≥ 0
s

s  =  r θ (4.2.1)

s  =  r θ  =  (2) (1.2)  =   2.4 cm

. So first convert  to radians, then use :θ = 41∘
s = r θ

θ =   =   ⋅ 41  =  0.716 rad ⇒ s  =  r θ  =  (10) (0.716)  =  41∘ π

180
7.16 ft

s r
s

r
θ

θ = 0.4 rad  =   ⋅ 0.4  =  
180

π
22.92∘

θ > 2π θ > 360∘

4.2.1
θ > 2π

s = r θ

A rope is fastened to a wall in two places  ft apart at the same height. A cylindrical container with a
radius of  ft is pushed away from the wall as far as it can go while being held in by the rope, as in
Figure 4.2.3 which shows the top view. If the center of the container is  feet away from the point
on the wall midway between the ends of the rope, what is the length  of the rope?

8
2

3
L

L = 2 (AB + )BC

 

△ADE

AE = = = 5D +DE2 A2
− −−−−−−−−−

√ +32 42
− −−−−−

√

AB
¯ ¯¯̄¯̄¯̄

∠ ABE
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By Equation  the arc  has length , where  is the supplement of . So since

we have

Converting to radians, we get  rad. Thus,

Figure 4.2.4 Belt pulleys with radii 5 cm and 8 cm
First, at the center  of the pulley with radius , draw a circle of radius , which is the difference in the radii of the two
pulleys. Let  be the point where this circle intersects . Then we know that the tangent line  to this smaller circle
is perpendicular to the line segment . Thus,  is a right angle, and so the length of  is

by the Pythagorean Theorem. Now since  and  and , the quadrilateral  must be
a rectangle. In particular, , so .

By Equation  we know that  and , where the angles are measured in
radians. So thinking of angles in radians (using  rad ), we see from Figure 4.2.4 that

where

Thus,  rad. So since  and  are parallel, we have  rad.
Thus,  rad. Hence,
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AB  =     =     =    ft.A −BE
2

E
2− −−−−−−−−−

√ −52 22− −−−−−
√ 21

−−
√

4.2.1 BC

 

BE ⋅ θ θ = ∠ BEC ∠ AED +∠ AEB

tan ∠ AED  =     ⇒  ∠ AED  =   and cos ∠ AEB  =     =     ⇒  ∠ AEB  =    ,
4

3
53.1∘ BE

AE

2

5
66.4∘

θ  =  ∠ BEC   =   − (∠ AED +∠ AEB)  =   − ( + )  =    .180∘ 180∘ 53.1∘ 66.4∘ 60.5∘

θ = ⋅ 60.5 = 1.06π

180

L  =  2 (AB + ⋅ )  =  2 ( + BE ⋅ θ)  =  2 ( + (2) (1.06))  =    .BC

 

21
−−

√ 21
−−

√ 13.4 ft

B 8 3

C BF
¯ ¯¯̄¯̄¯̄

AC
¯ ¯¯̄¯̄¯̄

BF
¯ ¯¯̄¯̄¯̄

∠ ACB AC
¯ ¯¯̄¯̄¯̄

AC   =     =     =     =  6A −BB
2

C
2− −−−−−−−−−

√ −152 32− −−−−−−
√ 216

−−−
√ 6

–
√

⊥AE
¯ ¯¯̄¯̄¯̄

EF
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–

√

4.2.1 = EA ⋅ ∠ DAEDE

 

= BF ⋅ ∠ GBFF G

 

π = 180∘

∠ DAE  =  π − ∠ EAC − ∠ BAC   =  π − − ∠ BAC   =   − ∠ BAC  ,
π

2

π

2

sin ∠ BAC   =     =     =  0.2 ⇒ ∠ BAC   =  0.201 rad.
BC

AB

3

15

∠ DAE = − 0.201 = 1.37π

2
AE
¯ ¯¯̄¯̄¯̄

BF
¯ ¯¯̄¯̄¯̄

∠ ABC = ∠ DAE = 1.37

∠ GBF = π − ∠ ABC = π − 1.37 = 1.77

L  =  2 ( + EF + )  =  2 (5 (1.37) + 6 + 8 (1.77))  =    .DE
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6
–
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4.3: Area of a Sector
In geometry you learned that the area of a circle of radius  is . We will now learn how to find the area of a sector of a
circle. A sector is the region bounded by a central angle and its intercepted arc, such as the shaded region in Figure 4.3.1.

Let  be a central angle in a circle of radius  and let  be the area of its sector. Similar to arc length, the ratio of  to the area
of the entire circle is the same as the ratio of  to one revolution. In other words, again using radian measure,

Solving for  in the above equation, we get the following formula:

In a circle of radius , the area  of the sector inside a central angle  is

where  is measured in radians.

Using  and  in Equation , the area  of the sector is

Find the area of a sector whose angle is  in a circle of radius  m.

Solution:

As with arc length, we have to make sure that the angle is measured in radians or else the answer will be way off. So
converting  to radians and using  in Equation  for the area  of the sector, we get

For a sector whose angle is  in a circle of radius , the length of the arc cut off by that angle is . Thus, by Equation 
 the area  of the sector can be written as:

Note: The central angle  that intercepts an arc is sometimes called the angle subtended by the arc.

Using  and  in Equation  for the area , we get

Note that the angle subtended by the arc is  rad.

r πr2

θ r A A

θ

  =   ⇒   =    .
area of sector

area of entire circle

sector angle

one revolution

A

π r2

θ

2π

A

r A θ

A  =   θ ,1
2

r2 (4.3.1)

θ

Solution
θ = π

5
r = 4 4.3.1 A

A  =   θ  = (4 ⋅   =    .1
2

r2 1
2

)2 π

5
 8π

5
cm2

Example 4.9
117∘ 3.5

θ = 117∘ r = 3.5 4.3.1 A

θ  =     =   ⋅ 117  =  2.042 rad ⇒ A  =   θ  = (3.5 (2.042)  =    .117∘ π

180
1
2

r2 1
2

)2 12.51 m2

θ r s = r θ

4.3.1 A

A  =   rs1
2

(4.3.2)

θ

Solution
s = 6 r = 9 4.3.2 A

A  =   rs  =    =   (9) (6)  =    .1
2

1
2

27 cm2

θ = =s
r

2
3

Example 4.11
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Find the area  inside the belt pulley system from Example 4.7 in Section 4.2.

Solution:

Recall that the belt pulleys have radii of  cm and  cm, and their centers are  cm apart. We showed in Example 4.7
that ,  rad, and  rad. We see from Figure 4.3.2 that, by symmetry, the
total area  enclosed by the belt is twice the area above the line , that is,

Figure 4.3.2 Belt pulleys with radii 5 cm and 8 cm

Since  is a rectangle with sides  and , its area is . And since  is a right triangle whose legs
have lengths  and , its area is . Thus, using Equation  for the areas of sectors  and 

, we have

So far we have dealt with the area cut off by a central angle. How would you find the area of a region cut off by an inscribed
angle, such as the shaded region in Figure 4.3.3? In this picture, the center of the circle is inside the inscribed angle, and the
lengths  and  of the two chords are given, as is the radius  of the circle. Drawing line segments from the center of the circle
to the endpoints of the chords indicates how to solve this problem: add up the areas of the two triangles and the sector formed
by the central angle. The areas and angles of the two triangles can be determined (since all three sides are known) using
methods from Chapter 2. Also, recall (Theorem 2.4 in Section 2.5) that a central angle has twice the measure of any inscribed
angle which intercepts the same arc. In the exercises you will be asked to solve problems like this (including the cases where
the center of the circle is outside or on the inscribed angle).

Figure 4.3.3

Another type of region we can consider is a segment of a circle, which is the region between a chord and the arc it cuts off. In

Figure 4.3.4 the segment formed by the chord  is the shaded region between the arc  and the triangle . By
Equation 2.23 in Section 2.4 for the area of a triangle given two sides and their included angle, we know that

K

5 8 15
EF = AC = 6 6

–
√ ∠ DAE = 1.37 ∠ GBF = 1.77

K DG
¯ ¯¯̄¯̄¯̄

K  =  2 ((Area of sector DAE)  +  (Area of rectangle AEF C)

+ (Area of triangle △ABC)  +  (Area of sector GBF )) .

AEF C 5 6 6
–

√ 30 6
–

√ △ABC

3 6 6
–

√ (3) (6 ) = 91
2

6
–

√ 6
–

√ 4.3.1 DAE

GBF

K  =  2 ((Area of sector DAE) + 30 + 9 + (Area of sector GBF ))6
–

√ 6
–

√

=  2 ( (5 (1.37)  +  30   +  9   +   (8 (1.77))1
2

)2 6
–

√ 6
–

√ 1
2

)2

=    .338.59 cm2

a b r

AB
¯ ¯¯̄¯̄¯̄

AB
 

△OAB

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3326?pdf


Michael Corral 2/24/2021 4.3.3
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3326

Figure 4.3.4

Thus, since the area  of the segment is the area of the sector  minus the area of the triangle , we have

Note that as a consequence of Equation  we must have  for  (measured in radians), since the area of
a segment is positive for those angles.

Figure 4.3.5
Solution

Figure 4.3.5 shows the segment formed by a chord of length  in a circle of radius . We can use the Law of Cosines
to find the subtended central angle :

Thus, by Equation  the area  of the segment is:

The centers of two circles are  cm apart, with one circle having a radius of  cm and the other a radius of  cm. Find the
area  of their intersection.

Solution:

area of △OAB  =   (r) (r) sin θ  =   sin θ .1
2

1
2

r2

K AOB △OAB

area K of segment AB  =   θ  −   sin θ  =    .1
2

r2 1
2

r2 (θ −sin θ)1
2

r2 (4.3.3)

4.3.3 θ > sin θ 0 < θ ≤ π

3 r = 2
θ

cos θ  =     =   −0.125 ⇒ θ  =  1.696 rad
+ −22 22 32

2 (2) (2)

4.3.3 K

K  =   (θ −sin θ)  =   (2 (1.696 −sin 1.696)  =  1
2

r2 1
2

)2 1.408

Example 4.13
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Figure 4.3.6

By symmetry, we see that  and . So let  and , as in
Figure 4.3.6(b). By the Law of Cosines, we have

Thus, the area  is
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∠ BAC = ∠ CAD1
2

∠ ABC = ∠ CBD1
2

α = ∠ BAC β = ∠ ABC

cos α 

cos β 

=    
+ −72 52 42

2 (7) (5)

=    
+ −72 42 52

2 (7) (4)

=  0.8286

=  0.7143

⇒ α 

⇒ β 

=  0.594 rad

=  0.775 rad

⇒ ∠ CAD 

⇒ ∠ CBD 

=  2 (0.594) = 1.188 rad

=  2 (0.775) = 1.550 rad

K

K  =  (Area of segment CD in circle at A)  +  (Area of segment CD in circle at B)

=   (5 (1.188 −sin 1.188)  +   (4 (1.550 −sin 1.550)1
2

)2 1
2

)2

=    .7.656 cm2
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4.4: Circular Motion- Linear and Angular Speed
Radian measure and arc length can be applied to the study of circular motion. In physics the average speed of an object is
defined as:

Figure 4.4.1

So suppose that an object moves along a circle of radius , traveling a distance  over a period of time , as in Figure 4.4.1.
Then it makes sense to define the (average) linear speed  of the object as:

Let  be the angle swept out by the object in that period of time. Then we define the (average) angular speed  of the object
as:

Angular speed gives the rate at which the central angle swept out by the object changes as the object moves around the circle,
and it is thus measured in radians per unit time. Linear speed is measured in distance units per unit time (e.g. feet per second).
The word linear is used because straightening out the arc traveled by the object along the circle results in a line of the same
length, so that the usual definition of speed as distance over time can be used. We will usually omit the word average when
discussing linear and angular speed here.

Since the length  of the arc cut off by a central angle  in a circle of radius  is , we see that

so that we get the following relation between linear and angular speed:

An object sweeps out a central angle of  radians in  seconds as it moves along a circle of radius  m. Find its linear
and angular speed over that time period.

Solution:

Here we have  sec,  m, and  rad. So the angular speed  is

average speed  =  
distance traveled

time elapsed

r s t

ν

ν  =  
s

t
(4.4.1)

θ ω

ω  =  
θ

t
(4.4.2)

s θ r s = r θ

ν  =     =     =   ⋅ r ,
s

t

r θ

t

θ

t

ν  =  ω r (4.4.3)

Example 4.14
π

3
0.5 3

t = 0.5 r = 3 θ = π

3
ω

ω  =     =   ⇒  ,
θ

t

 rad
π

3
0.5 sec

ω  =    rad/sec
2π

3
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and thus the linear speed  is

Note that the units for  are rad/sec and the units of  are m/sec. Recall that radians are actually unitless, which is why in
the Equation  the radian units disappear.

An object travels a distance of  ft in  seconds as it moves along a circle of radius  ft. Find its linear and angular
speed over that time period.

Solution:

Here we have  sec,  ft, and  ft. So the linear speed  is

and thus the angular speed  is given by

An object moves at a constant linear speed of  m/sec around a circle of radius  m. How large of a central angle does it
sweep out in  seconds?

Solution:

Here we have  sec,  m/sec, and  m. Thus, the angle  is given by

In many physical applications angular speed is given in revolutions per minute, abbreviated as rpm. To convert from rpm to,
say, radians per second, notice that since there are  radians in one revolution and  seconds in one minute, we can convert 

 rpm to radians per second by "canceling the units'' as follows:

This works because all we did was multiply by  twice. Converting to other units for angular speed works in a similar way.
Going in the opposite direction, say, from rad/sec to rpm, gives:

ν

ν  =  ω r  =  (  rad/sec) (3 m) ⇒  .
2π

3
ν  =  2π m/sec

ω ν

ν = ω r

Example 4.15
35 2.7 2

t = 2.7 r = 2 s = 35 ν

ν  =     =   ⇒  ,
s

t

35 feet

2.7 sec
ν  =  12.96 ft/sec

ω

ν  =  ω r ⇒ 12.96 ft/sec  =  ω (2 ft) ⇒  .ω  =  6.48 rad/sec

Example 4.16
10 4

3.1

t = 3.1 ν = 10 r = 4 θ

s  =  r θ ⇒ θ  =     =     =     =    .
s

r

ν t

r

(10 m/sec) (3.1 sec)

4 m
7.75 rad

2π 60

N

N  rpm  =  N   ⋅ ⋅   =    rad/sec
rev

min

2π rad

1  rev

1  min

60 sec

N ⋅ 2π

60

1

N  rad/sec  =    rpm
N ⋅ 60

2π
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Figure 4.4.2
Solution

Imagine a particle on the outer radius of each gear. After the gears have rotated for a period of time , the circular
displacement of each particle will be the same. In other words, , where  and  are the distances traveled by the
particles on the gears with radii  and , respectively.

But  and , where  and  are the linear speeds of the gears with radii  and , respectively. Thus,

so by Equation  we get the fundamental relation between the two gears:

Note that this holds for any two gears. So in our case, we have

Contributors and Attributions 
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

t > 0

=s1 s2 s1 s2

r1 r2

= ts1 ν1 = ts2 ν2 ν1 ν2 r1 r2

t = t ⇒ =  ,ν1 ν2 ν1 ν2

4.4.3

  =  ω1 r1 ω2 r2 (4.4.4)

(5)  =  (25) (4) ⇒  .ω1   =  20 rpmω1
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4.E: Radian Measure (Exercises)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for
college students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is
taken than usual. Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

4.1 Exercise
For Exercises 1-5, convert the given angle to radians.

4.1.1 

4.1.2 

4.1.3 

4.1.4 

4.1.5 

For Exercises 6-10, convert the given angle to degrees.

4.1.6  rad

4.1.7  rad

4.1.8  rad

4.1.9  rad

4.1.10  rad

4.1.11 Put your calculator in radian mode and take the cosine of . Whatever the answer is, take its cosine. Then take the
cosine of the new answer. Keep repeating this. On most calculators after about -  iterations you should start to see the
same answer repeating. What is that number? Try starting with a number different from . Do you get the same answer
repeating after roughly the same number of iterations as before? Try the same procedure in degree mode, starting with .
Does the same thing happen? If so, does it take fewer iterations for the answer to start repeating than in radian mode, or more?

4.2 Exercise
For Exercises 1-4, find the length of the arc cut off by the given central angle  in a circle of radius .

4.2.1  rad,  cm

4.2.2 ,  m

4.2.3  rad,  in

4.2.4 A central angle in a circle of radius  cm cuts off an arc of length  cm. What is the measure of the angle in radians?
What is the measure of the angle in degrees?

4∘

15∘

130∘

275∘

−108∘

4

π

5

11π

9

29π

30

35

0
50 60

0
0∘

θ r

θ = 0.8 r = 12

θ = 171∘
r = 8

θ = π r = 11

2 4.6
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4.2.5 The centers of two belt pulleys, with radii of  inches and  inches, respectively, are  inches apart. Find the total length
 of the belt around the pulleys.

4.2.6 In Figure 4.2.5 one end of a  ft iron rod is attached to the center of a pulley with radius  ft. The other end is attached
at a  angle to a wall, at a spot  ft above the lower end of a steel wire supporting a box. The other end of the wire comes
out of the wall straight across from the top of the pulley. Find the length  of the wire from the wall to the box.

Figure 4.2.5 Exercise 6

Figure 4.2.6 Exercise 7

4.2.7 Figure 4.2.6 shows the same setup as in Exercise 6 but now the wire comes out of the wall  ft above where the rod is
attached. Find the length  of the wire from the wall to the box.

4.2.8 Find the total length  of the figure eight shape in Figure 4.2.7.

Figure 4.2.7

4.2.9 Repeat Exercise 8 but with the circle at  having a radius of  instead of . (Hint: Draw a circle of radius  centered at 
, then draw a tangent line to that circle from .)

4.2.10 Suppose that in Figure 4.2.7 the lines do not criss-cross but instead go straight across, as in a belt pulley system. Find
the total length  of the resulting shape.

3 6 13
L

4 0.5
40∘ 6

L

2
L

L

A 3 2 5
A B

L
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4.2.11 Find the lengths of the two arcs cut off by a chord of length  in a circle of radius .

4.2.12 Find the perimeter of a regular dodecagon (i.e. a -sided polygon with sides of equal length) inscribed inside a circle
of radius . Compare it to the circumference of the circle.

4.3 Exercise
For Exercises 1-3, find the area of the sector for the given angle  and radius .

4.3.1  rad,  cm

4.3.2  rad,  ft

4.3.3 ,  m

4.3.4 The centers of two belt pulleys, with radii of  cm and  cm, respectively, are  cm apart. Find the total area 
enclosed by the belt.

4.3.5 In Exercise 4 suppose that both belt pulleys have the same radius of  cm. Find the total area  enclosed by the belt.

4.3.6 Find the area enclosed by the figure eight in Exercise 8 from Section 4.2.

For Exercises 7-9, find the area of the sector for the given radius  and arc length .

4.3.7  cm,  cm

4.3.8 , 

4.3.9  cm,  cm

For Exercises 10-12, find the area of the segment formed by a chord of length  in a circle of radius .

4.3.10  cm,  cm

4.3.11  cm,  cm

4.3.12  cm,  cm

4.3.13 Find the area of the shaded region in Figure 4.3.7.

Figure 4.3.7 Exercise 13

4.3.14 Find the area of the shaded region in Figure 4.3.8. (Hint: Draw two central angles.)

3 2

12
1
2

θ r

θ = 2.1 r = 1.2

θ = 3π

7
r = 3.5

θ = 78∘
r = 6

3 6 13 K

6 K

r s

r = 5 s = 2

r = a s = a

r = 1 s = π

a r

a = 4 r = 4

a = 1 r = 5

a = 2 r = 5
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Figure 4.3.8 Exercise 14

4.3.15 Find the area of the shaded region in Figure 4.3.9.

Figure 4.3.9 Exercise 15

4.3.16 The centers of two circles are  cm apart, with one circle having a radius of  cm and the other a radius of  cm. Find
the area of their intersection.

4.3.17 Three circles with radii of  m,  m, and  m are externally tangent to each other. Find the area of the curved region
between the circles, as in Figure 4.3.10. (Hint: Connect the centers of the circles.)

Figure 4.3.10 Exercise 17

Figure 4.3.11 Exercise 18

4.3.18 Show that the total area enclosed by the loop around the three circles of radius  in Figure 4.3.11 is .

4 3 2

4 2 1

r (π +6 + )3
–

√ r
2

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3331?pdf


Michael Corral 3/3/2021 4.E.5
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3331

4.3.19 For a fixed central angle , how much does the area of its sector increase when the radius of the circle is doubled? How
much does the length of its intercepted arc increase?

4.4 Exercise
For Exercises 1-6, assume that a particle moves along a circle of radius  for a period of time . Given either the arc length 
or the central angle  swept out by the particle, find the linear and angular speed of the particle.

4.4.1  m,  sec,  rad

4.4.2  m,  sec,  rad

4.4.3  m,  sec, 

4.4.4  m,  sec,  m

4.4.5  m,  sec,  m

4.4.6  ft,  sec,  in

4.4.7 An object moves at a constant linear speed of  m/sec around a circle of radius  m. How large of a central angle does
it sweep out in  seconds?

4.4.8 Two interlocking gears have outer radii of  cm and  cm, respectively. If the smaller gear rotates at  rpm, how fast
does the larger gear rotate?

4.4.9 Three interlocking gears have outer radii of  cm,  cm, and  cm, respectively. If the largest gear rotates at  rpm, how
fast do the other gears rotate?

4.4.10 In Example 4.17, does equation 4.11 still hold if the radii  and  are replaced by the number of teeth  and ,
respectively, of the two gears as shown in Figure 4.4.2?

4.4.11 A  rpm music record has a diameter of  inches. What is the linear speed of a speck of dust on the outer edge of the
record in inches per second?

4.4.12 The centripetal acceleration  of an object moving along a circle of radius  with a linear speed  is defined as 
. Show that , where  is the angular speed.
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CHAPTER OVERVIEW
5: GRAPHING AND INVERSE FUNCTIONS

5.1: GRAPHING THE TRIGONOMETRIC FUNCTIONS
The trigonometric functions can be graphed just like any other function, as we will now show. In
the graphs we will always use radians for the angle measure.

5.2: PROPERTIES OF GRAPHS OF TRIGONOMETRIC FUNCTIONS
We saw in Section 5.1 how the graphs of the trigonometric functions repeat every 2π radians. In
this section we will discuss this and other properties of graphs, especially for the sinusoidal
functions (sine and cosine).

5.3: INVERSE TRIGONOMETRIC FUNCTIONS
We have briefly mentioned the inverse trigonometric functions before, but we will now define those inverse functions and determine
their graphs.

5.E: GRAPHING AND INVERSE FUNCTIONS (EXERCISES)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for college
students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is taken than usual.
Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.
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5.1: Graphing the Trigonometric Functions
The first function we will graph is the sine function. We will describe a geometrical way to create the graph, using the unit
circle. This is the circle of radius  in the -plane consisting of all points  which satisfy the equation .

Figure 5.1.1

We see in Figure 5.1.1 that any point on the unit circle has coordinates , where  is the angle that the
line segment from the
origin to  makes with the positive -axis (by definition of sine and cosine). So as the point  goes around the circle,
its -coordinate is .

We thus get a correspondence between the -coordinates of points on the unit circle and the values , as shown by
the horizontal lines from the unit circle to the graph of  in Figure 5.1.2 for the angles , , , .

Figure 5.1.2 Graph of sine function based on -coordinate of points on unit circle

We can extend the above picture to include angles from  to  radians, as in Figure 5.1.3. This illustrates what is sometimes
called the unit circle definition of the sine function.

1 xy (x, y) + = 1x2 y2

(x, y) = (cos θ, sin θ) θ

(x, y) x (x, y)

y sin θ

y f(θ) = sin θ

f(θ) = sin θ θ = 0 π
6

π
3

π
2

y

0 2π
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Figure 5.1.3 Unit circle definition of the sine function

Since the trigonometric functions repeat every  radians ( ), we get, for example, the following graph of the function 
 for  in the interval :

Figure 5.1.4 Graph of 

To graph the cosine function, we could again use the unit circle idea (using the -coordinate of a point that moves around the
circle), but there is an easier way. Recall from Section 1.5 that  for all . So  has the same value
as ,  has the same value as ,  has the same value as , and so on. In other words, the
graph of the cosine function is just the graph of the sine function shifted to the left by  radians, as in Figure 5.1.5:

Figure 5.1.5 Graph of 

To graph the tangent function, use  to get the following graph:

2π 360∘

y = sin x x [−2π, 2π]

y = sin x

x

cos x = sin (x + )90∘ x cos 0∘

sin 90∘ cos 90∘ sin 180∘ cos 180∘ sin 270∘

= π/290∘

y = cos x

tan x = sin x
cos x
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Figure 5.1.6 Graph of 

Recall that the tangent is positive for angles in QI and QIII, and is negative in QII and QIV, and that is indeed what the graph
in Figure 5.1.6 shows. We know that  is not defined when , i.e. at odd multiples of : , , ,
etc. We can figure out what happens near those angles by looking at the sine and cosine functions. For example, for  in QI
near ,  and  are both positive, with  very close to  and  very close to , so the quotient 

 is a positive number that is very large. And the closer  gets to , the larger  gets. Thus,  is a
vertical asymptote of the graph of .

Likewise, for  in QII very close to ,  is very close to  and  is negative and very close to , so the quotient 
 is a negative number that is very large, and it gets larger in the negative direction the closer  gets to . The

graph shows this. Similarly, we get vertical asymptotes at , , and , as in Figure 5.1.6. Notice that the
graph of the tangent function repeats every  radians, i.e. two times faster than the graphs of sine and cosine repeat.

The graphs of the remaining trigonometric functions can be determined by looking at the graphs of their reciprocal functions.
For example, using  we can just look at the graph of  and invert the values. We will get vertical
asymptotes when , namely at multiples of : , , , etc. Figure 5.1.7 shows the graph of , with
the graph of  (the dashed curve) for reference.

y = tanx

tan x cos x = 0 π
2

x = ± π
2

± 3π

2
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x
π

2
sin x cos x sin x 1 cos x 0

tan x = sin x
cos x

x π
2

tan x x = π
2

y = tan x

x π

2
sin x 1 cos x 0

tan x = sin x

cos x
x π

2

x = − π

2
x = 3π

2
x = − 3π

2

π

csc x = 1
sin x

y = sin x

sin x = 0 π x = 0 ± π ± 2π y = csc x
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Figure 5.1.7 Graph of 

Likewise, Figure 5.1.8 shows the graph of , with the graph of  (the dashed curve) for reference. Note the
vertical asymptotes at , . Notice also that the graph is just the graph of the cosecant function shifted to the left
by  radians.

Figure 5.1.8 Graph of 

The graph of  can also be determined by using . Alternatively, we can use the relation 
 from Section 1.5, so that the graph of the cotangent function is just the graph of the tangent

function shifted to the left by  radians and then reflected about the -axis, as in Figure 5.1.9:

y = csc x

y = sec x y = cos x

x = ± π
2

± 3π

2
π

2

y = sec x

y = cot x cot x = 1
tan x

cot x = −tan (x + )90∘

π

2
x
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Figure 5.1.9 Graph of 

Draw the graph of  for .

Solution:

Multiplying a function by  just reflects its graph around the -axis. So reflecting the graph of  around the -
axis gives us the graph of :

\noindent Note that this graph is the same as the graphs of  and .

y = cot x

Example 5.1.1

y = −sin x 0 ≤ x ≤ 2π

−1 x y = sin x x

y = −sin x

y = sin (x ±π) y = cos (x + )π

2
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It is worthwhile to remember the general shapes of the graphs of the six trigonometric functions, especially for sine, cosine,
and tangent. In particular, the graphs of the sine and cosine functions are called sinusoidal curves. Many phenomena in nature
exhibit sinusoidal behavior, so recognizing the general shape is important.

Draw the graph of  for .

Solution

Adding a constant to a function just moves its graph up or down by that amount, depending on whether the constant is
positive or negative, respectively. So adding  to  moves the graph of  upward by , giving us the graph
of :

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

Example 5.1.2

y = 1 +cos x 0 ≤ x ≤ 2π

1 cos x y = cos x 1

y = 1 +cos x
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5.2: Properties of Graphs of Trigonometric Functions
We saw in Section 5.1 how the graphs of the trigonometric functions repeat every  radians. In this section we will discuss
this and other properties of graphs, especially for the sinusoidal functions (sine and cosine).

First, recall that the domain of a function  is the set of all numbers  for which the function is defined. For example, the
domain of  is the set of all real numbers, whereas the domain of  is the set of all real numbers
except , , , . The range of a function  is the set of all values that  can take over its domain. For
example, the range of  is the set of all real numbers between  and  (i.e. the interval ), whereas the
range of  is the set of all real numbers, as we can see from their graphs.

A function  is periodic if there exists a number  such that  is in the domain of  whenever  is, and if the
following relation holds:

There could be many numbers  that satisfy the above requirements. If there is a smallest such number , then we call that
number the period of the function .

The functions , , , and  all have the same period:  radians. We saw in Section 5.1 that the graphs
of  and  repeat every  radians but they also repeat every  radians. Thus, the functions  and 

 have a period of  radians.

What is the period of ?

Solution

The graph of  is shown in Figure , along with the graph of  for comparison, over the interval 
. Note that  ``goes twice as fast'' as .

Figure : Graph of 

For example, for  from  to ,  goes from  to , but  is able to go from  to  quicker, just over the
interval . While  takes a full  radians to go through an entire cycle (the largest part of the graph that does not
repeat),  goes through an entire cycle in just  radians. So the period of  is  radians.

The above example made use of the graph of , but the period can be found analytically. Since  has period , we
know that  for all . Since  is a number for all , this means in particular that 

 for all . Now define . Then

2π

f(x) x

f(x) = sin x f(x) = tan x

x = ± π

2
± 3π

2
± 5π

2
. . . f(x) f(x)

f(x) = sin x −1 1 [−1, 1]
f(x) = tan x

f(x) p > 0 x +p f(x) x

f(x +p)  =  f(x) for all x (5.2.1)

p p

f(x)

Example 5.2.1

sin x cos x csc x sec x 2π

y = tan x y = cot x 2π π tan x

cot x π

Example 5.2.2

f(x) = sin 2x

y = sin 2x 5.2.1 y = sin x

[0, 2π] sin 2x sin x

5.2.1 y = sin 2x

x 0 π

2
sin x 0 1 sin 2x 0 1

[0, ]π

4
sin x 2π

sin 2x π sin 2x π

sin 2x sin x 2π

sin (x +2π) = sin x x 2x x

sin (2x +2π) = sin 2x x f(x) = sin 2x
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for all , so the period  of  is at most , by our definition of period. We have to show that  can not be smaller
than . To do this, we will use a proof by contradiction. That is, assume that , then show that this leads to some
contradiction, and hence can not be true. So suppose . Then , and hence

for all . Since any number  can be written as  for some  (i.e ), this means that  for all
real numbers , and hence the period of  is as most . This is a contradiction. Why? Because the period of  is 

. Hence, the period  of  can not be less than , so the period must equal .

The above may seem like a lot of work to prove something that was visually obvious from the graph (and intuitively obvious
by the "twice as fast'' idea). Luckily, we do not need to go through all that work for each function, since a similar argument
works when  is replaced by  for any positive real number : instead of dividing  by  to get the period, divide
by . And the argument works for the other trigonometric functions as well. Thus, we get:

For any number :

If , then use  and  (e.g. ).

The period of  is  and the period of  is . The graphs of both functions are shown in Figure
5.2.2:

Figure : Graph of 

We know that  and  for all . Thus, for a constant ,

for all . In this case, we call  the amplitude of the functions  and . In general, the amplitude of
a periodic curve  is half the difference of the largest and smallest values that  can take:

f(x +π)  =   sin 2 (x +π)

=   sin (2x +2π)

=   sin 2x (as we showed above)

=  f(x)

x p sin 2x π p > 0
π 0 < p < π

0 < p < π 0 < 2p < 2π

sin 2x  =  f(x)

=  f(x +p) (since p is the period of f(x))

=   sin 2(x +p)

=   sin (2x +2p)

x u 2x x u = 2(u/2) sin u = sin (u +2p)
u sin x 2p sin x

2π > 2p p sin 2x π π

sin 2x sin ωx ω 2π 2
ω

ω > 0

sin ωx  

cos ωx  

tan ωx  

has period  
2π

ω

has period  
2π

ω

has period  
π

ω

csc ωx  

sec ωx  

cot ωx  

has period  
2π

ω

has period  
2π

ω

has period  
π

ω

ω < 0 sin (−A) = −sin A cos (−A) = cos A sin (−3x) = −sin 3x

Example 5.2.3

y = cos 3x 2π

3
y = cos x1

2
4π

5.2.2 y = cos 3x and y = cos x1
2

−1 ≤ sin x ≤ 1 −1 ≤ cos x ≤ 1 x A ≠ 0

−|A|  ≤  A sin x  ≤  |A| and −|A|  ≤  A cos x  ≤  |A|

x |A| y = A sin x y = A cos x

f(x) f(x)

Amplitude of f(x)  =  
(maximum of f(x))  −  (minimum of f(x))

2
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In other words, the amplitude is the distance from either the top or bottom of the curve to the horizontal line that divides the
curve in half, as in Figure 5.2.3.

Figure 5.2.3 Amplitude = 

Not all periodic curves have an amplitude. For example,  has neither a maximum nor a minimum, so its amplitude is
undefined. Likewise, , , and  do not have an amplitude. Since the amplitude involves vertical distances, it has
no effect on the period of a function, and vice versa.

Find the amplitude and period of .

Solution

The amplitude is  and the period is . The graph is shown in Figure 5.2.4:

Figure 5.2.4 

Find the amplitude and period of .

Solution

The amplitude of  is . Adding  to that function to get the function  does not
change the amplitude, even though it does change the maximum and minimum. It just shifts the entire graph upward by .
So in this case, we have

= = |A|max−min
2

|A|−(−|A|)

2

tan x

cot x csc x sec x

Example 5.2.4

y = 3 cos 2x

|3| = 3 = π2π

2

y = 3 cos 2x

Example 5.2.5

y = 2 −3 sin x2π

3

−3 sin x2π

3
| −3| = 3 2 y = 2 −3 sin x2π

3
2

Amplitude  =     =     =     =  3 .
max  − min

2

5  − (−1)

2

6

2
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The period is . The graph is shown in Figure 5.2.5:

Figure 5.2.5 

Find the amplitude and period of .

Solution

This is not a periodic function, since the angle that we are taking the sine of, , is not a linear function of , i.e. is not of
the form  for some constants  and . Recall how we argued that  was ``twice as fast'' as , so that its
period was  instead of . Can we say that  is some constant times as fast as ? No. In fact, we see that the
"speed'' of the curve keeps increasing as  gets larger, since  grows at a variable rate, not a constant rate. This can be
seen in the graph of , shown in Figure 5.2.6:

Figure 5.2.6 

Notice how the curve "speeds up'' as  gets larger, making the "waves'' narrower and narrower. Thus,  has
no period. Despite this, it appears that the function does have an amplitude, namely . To see why, note that since 

 for all , we have

In the exercises you will be asked to find values of  such that  reaches the maximum value  and the
minimum value . Thus, the amplitude is indeed .
Note: This curve is still sinusoidal despite not being periodic, since the general shape is still that of a "sine wave'', albeit
one with variable cycles.

= 3
2π
2π
3

y = 2 − 3 sin x2π

3

Example 5.2.6

y = 2 sin ( )x2

x2 x

ax +b a b sin 2x sin x

π 2π sin ( )x2 sin x

x x2

y = 2 sin ( )x2

y = 2 sin( )x2

x y = 2 sin ( )x2

2
| sin θ| ≤ 1 θ

|2 sin ( )|  =  |2| ⋅ | sin ( )|  ≤  2 ⋅ 1  =  2 .x2 x2

x 2 sin ( )x2 2
−2 2
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So far in our examples we have been able to determine the amplitudes of sinusoidal curves fairly easily. This will not always
be the case.

Find the amplitude and period of .

Solution

This is sometimes called a combination sinusoidal curve, since it is the sum of two such curves. The period is still simple
to determine: since  and  each repeat every  radians, then so does the combination .
Thus,  has period . We can see this in the graph, shown in Figure 5.2.7:

Figure 5.2.7 

The graph suggests that the amplitude is , which may not be immediately obvious just by looking at how the function is
defined. In fact, the definition  may tempt you to think that the amplitude is , since the largest
that  could be is  and the largest that  could be is , so that the largest their sum could be is .
However,  can never equal  for the same  that makes  equal to  (why?).

There is a useful technique (which we will discuss further in Chapter 6) for showing that the amplitude of 
 is . Let  be the angle shown in the right

triangle in Figure 5.2.8. Then  and . We can use this as follows:

Figure 5.2.8

Thus, , so the amplitude of  is .

In general, a combination of sines and cosines will have a period equal to the lowest common multiple of the periods of the
sines and cosines being added. In Example 5.9,  and  each have period , so the lowest common multiple (which
is always an integer multiple) is .

Find the period of .

Example 5.2.7

y = 3 sin x +4 cos x

sin x cos x 2π 3 sin x +4 cos x

y = 3 sin x +4 cos x 2π

y = 3 sin x + 4 cos x

5
y = 3 sin x +4 cos x 7

3 sin x 3 4 cos x 4 3 +4 = 7
3 sin x 3 x 4 cos x 4

y = 3 sin x +4 cos x 5 θ

cos θ = 3
5

sin θ = 4
5

y  =  3 sin x  +  4 cos x

=  5 ( sin x  +   cos x)3
5

4
5

=  5 (cos θ sin x  +   sin θ cos x)

=  5 sin (x +θ) (by the sine addition formula)

|y| = |5 sin (x +θ)| = |5| ⋅ | sin (x +θ)| ≤ (5)(1) = 5 y = 3 sin x +4 cos x 5

sin x cos x 2π

1 ⋅ 2π = 2π

Example 5.2.8

y = cos 6x +sin 4x
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Solution

The period of  is , and the period of  is . The lowest common multiple of  and  is :

Thus, the period of  is . We can see this from its graph in Figure 5.2.9:

Figure 5.2.9 

What about the amplitude? Unfortunately we can not use the technique from Example 5.9, since we are not taking the
cosine and sine of the same angle; we are taking the cosine of  but the sine of . In this case, it appears from the graph
that the maximum is close to  and the minimum is close to . In Chapter 6, we will describe how to use a numerical
computation program to show that the maximum and minimum are , respectively (accurate to
within ). Hence, the amplitude is .

Generalizing Example 5.9, an expression of the form  is equivalent to , where 
is an angle such that  and . So  will have amplitude .

Note that this method only works when the angle  is the same in both the sine and cosine terms.

We have seen how adding a constant to a function shifts the entire graph vertically. We will now see how to shift the entire
graph of a periodic curve horizontally.

Consider a function of the form , where  and  are nonzero constants. For simplicity we will assume that 
 and  (in general either one could be negative). Then the amplitude is  and the period is . The graph is shown

in Figure 5.2.10.

cos 6x =2π

6
π

3
sin 4x =2π

4
π

2
π

3
π

2
π

1 ⋅  π
3

2 ⋅  π

3

3 ⋅  π

3

=   π
3

=   2π

3

=  π

1

2

⋅  π
2

⋅  π

2

=   π
2

=  π

y = cos 6x +sin 4x π

y = cos 6x + sin 4x

6x 4x

2 −2
± 1.90596111871578

≈ 2.2204 ×10−16 1.90596111871578

a sin ωx + b cos ωx sin (x +θ)+a2 b2− −−−−−
√ θ

cos θ = a

+a2 b2√
sin θ = b

+a2 b2√
y = a sin ωx + b cos ωx +a2 b2

− −−−−−
√

ωx

y = A sin ωx A ω

A > 0 ω > 0 A 2π
ω
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Figure 5.2.10 

Now consider the function , where  is some constant. The amplitude is still , and the period is still ,
since  is a linear function of . Also, we know that the sine function goes through an entire cycle when its angle goes
from  to . Here, we are taking the sine of the angle . So as  goes from  to , an entire cycle of the
function  will be traced out. That cycle starts when

and ends when

Thus, the graph of  is just the graph of  shifted horizontally by , as in Figure 5.2.11. The

graph is shifted to the right when , and to the left when . The amount  of the shift is called the phase shift of the
graph.

Figure 5.2.11 Phase shift for 

The phase shift is defined similarly for the other trigonometric functions.

Find the amplitude, period, and phase shift of .

Solution

The amplitude is , the period is , and the phase shift is . The graph is shown in Figure 5.2.12:

y = A sin ωx

y = A sin (ωx −ϕ) ϕ A 2π
ω

ωx −ϕ x

0 2π ωx −ϕ ωx −ϕ 0 2π

y = A sin (ωx −ϕ)

ωx −ϕ  =  0 ⇒ x  =  
ϕ

ω

ωx −ϕ  =  2π ⇒ x  =   +  .
2π

ω

ϕ

ω

y = A sin (ωx −ϕ) y = A sin ωx
ϕ

ω

ϕ > 0 ϕ < 0
ϕ

ω

y = A sin(ωx − φ)

Example 5.2.9

y = 3 cos (2x −π)

3 = π2π
2

π
2
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Figure 5.2.12 

Notice that the graph is the same as the graph of  shifted to the right by , the amount of the phase shift.

Find the amplitude, period, and phase shift of .

Solution

The amplitude is , the period is , and the phase shift is . Notice the negative sign in the phase shift, since 
 is in the form . The graph is shown in Figure 5.2.13:

Figure 5.2.13 

In engineering two periodic functions with the same period are said to be out of phase if their phase shifts differ. For example, 
 and  would be  radians (or ) out of phase, and  would be said to lag  by  radians,

while  leads \(\sin\;x \) by  radians. Periodic functions with the same period and the same phase shift are in
phase.

The following is a summary of the properties of trigonometric graphs:

For any constants , , and :

Contributors and Attributions
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Documentation License, Version 1.2.

y = 3 cos(2x −π)

y = 3 cos 2x π
2

Example 5.2.10

y = −2 sin (3x + )π

2

2 2π

3
= −

−
π

2

3
π

6
3x +π = 3x −(−π) ωx −ϕ

y = −2 sin(3x + π2)

sin (x − )π

6
sin x π

6
30∘ sin x sin (x − )π

6
π

6

sin (x − )π

6
π

6

A ≠ 0 ω ≠ 0 ϕ

y = A sin (ωx −ϕ)  

y = A cos (ωx −ϕ)  

y = A tan (ωx −ϕ)  

y = A csc (ωx −ϕ)  

y = A sec (ωx −ϕ)  

y = A cot (ωx −ϕ)  

has amplitude |A|, period  , and phase shift 2π
ω

ϕ

ω

has amplitude |A|, period  , and phase shift 2π
ω

ϕ

ω

has undefined amplitude, period  , and phase shift π

ω

ϕ

ω

has undefined amplitude, period  , and phase shift 2π
ω

ϕ

ω

has undefined amplitude, period  , and phase shift 2π
ω

ϕ

ω

has undefined amplitude, period  , and phase shift π

ω

ϕ

ω

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3336?pdf
http://www.mecmath.net/trig/index.html
http://www.gnu.org/copyleft/fdl.html


Michael Corral 2/10/2021 5.3.1
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3337

5.3: Inverse Trigonometric Functions
We have briefly mentioned the inverse trigonometric functions before, for example in Section 1.3 when we discussed how to

use the , , and  buttons on a calculator to find an angle that has a certain trigonometric function value.
We will now define those inverse functions and determine their graphs.

Figure 5.3.1

Recall that a function is a rule that assigns a single object  from one set (the range to each object  from another set (the
domain). We can write that rule as , where  is the function (see Figure 5.3.1). There is a simple vertical rule for
determining whether a rule  is a function:  is a function if and only if every vertical line intersects the graph of 

 in the -coordinate plane at most once (see Figure 5.3.2).

Figure 5.3.2 Vertical rule for functions

Recall that a function  is one-to-one (often written as ) if it assigns distinct values of  to distinct values of . In other
words, if  then . Equivalently,  is one-to-one if  implies . There is a simple
horizontal rule for determining whether a function  is one-to-one:  is one-to-one if and only if every horizontal line
intersects the graph of  in the -coordinate plane at most once (see Figure 5.3.3).

Figure 5.3.3 Horizontal rule for one-to-one functions

If a function  is one-to-one on its domain, then  has an inverse function, denoted by , such that  if and only if 
. The domain of  is the range of .

The basic idea is that  "undoes'' what  does, and vice versa. In other words,

We know from their graphs that none of the trigonometric functions are one-to-one over their entire domains. However, we can
restrict those functions to subsets of their domains where they are one-to-one. For example,  is one-to-one over the
interval , as we see in the graph below:

sin−1 cos−1 tan−1

y x

y = f(x) f

y = f(x) f

y = f(x) xy

f 1 −1 y x

≠x1 x2 f( ) ≠ f( )x1 x2 f f( ) = f( )x1 x2 =x1 x2

y = f(x) f

y = f(x) xy

f f f −1 y = f(x)
(y) = xf −1 f −1 f

f −1 f

(f(x)) f −1

f( (y)) f −1

=  x

=  y

for all x in the domain of f , and

for all y in the range of f .

y = sin x

[− , ]π

2
π

2
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Figure 5.3.4  with  restricted to 

For  we have , so we can define the inverse sine function  (sometimes called the
arc sine and denoted by ) whose domain is the interval  and whose range is the interval . In
other words:

Find .

Solution

Since , we know that , by Equation .

Find .

Solution

Since , we can not use Equation . But we know that . Thus, 

 is, by definition, the angle  such that  and . That angle is 

, since

Thus, .

Example 5.14 illustrates an important point:  should always be a number between  and . If you get a number
outside that range, then you made a mistake somewhere. This why in Example 1.27 in Section 1.5 we got 

 when using the  button on a calculator. Instead of an angle between  and  (i.e.  to 
radians) we got an angle between  and  (i.e.  to  radians).

In general, the graph of an inverse function  is the reflection of the graph of  around the line . The graph of 
 is shown in Figure 5.3.5. Notice the symmetry about the line  with the graph of .

y = sin x x [− , ]π

2
π

2

− ≤ x ≤π
2

π
2

−1 ≤ sin x ≤ 1 y = xsin−1

y = arcsin x [−1, 1] [− , ]π
2

π
2

(sin y) sin−1

sin ( x) sin−1

=  y

=  x

for − ≤ y ≤π

2
π

2

for −1 ≤ x ≤ 1

(5.3.1)

(5.3.2)

Example 5.13
(sin )sin−1 π

4

− ≤ ≤π

2
π

4
π

2
(sin ) =sin−1 π

4

π

4
5.3.1

Example 5.14

(sin )sin−1 5π

4

>5π

4
π
2

5.3.1 sin = −5π

4
1
2√

(sin ) = (− )sin−1 5π
4

sin−1 1
2√

y − ≤ y ≤π
2

π
2

sin y = − 1
2√

y = − π

4

sin (− )   =   −sin ( )   =   −  .π

4
π

4
1
2√

(sin ) =sin−1 5π

4
− π

4

xsin−1 − π

2
π

2

(−0.682) = −sin−1 43∘ sin−1 0∘ 360∘ 0 2π

−90∘ 90∘ − π

2
π

2

f −1 f y = x

y = xsin−1 y = x y = sin x
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Figure 5.3.5 Graph of 

The inverse cosine function  (sometimes called the arc cosine and denoted by ) can be determined
in a similar fashion. The function  is one-to-one over the interval , as we see in the graph below:

Figure 5.3.6  with  restricted to 

Thus,  is a function whose domain is the interval  and whose range is the interval . In other words:

The graph of  is shown below in Figure 5.3.7. Notice the symmetry about the line  with the graph of 
.

y = xsin−1

y = xcos−1 y = arccos x

y = cos x [0, π]

y = cos x x [0, π]

y = xcos−1 [−1, 1] [0, π]

(cos y) cos−1

cos ( x) cos−1

=  y

=  x

for 0 ≤ y ≤ π

for −1 ≤ x ≤ 1

(5.3.3)

(5.3.4)

y = xcos−1 y = x

y = cos x
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Figure 5.3.7 Graph of 

Find .

Solution

Since , we know that , by Equation .

Find .

Solution

Since , we can not use Equation . But we know that . Thus,  is,
by definition, the angle  such that  and . That angle is  (i.e. ). Thus, 

.

Examples 5.14 and 5.16 may be confusing, since they seem to violate the general rule for inverse functions that 
 for all  in the domain of . But that rule only applies when the function  is one-to-one over its entire

domain. We had to restrict the sine and cosine functions to very small subsets of their entire domains in order for those
functions to be one-to-one. That general rule, therefore, only holds for  in those small subsets in the case of the inverse sine
and inverse cosine.

The inverse tangent function  (sometimes called the arc tangent and denoted by ) can be
determined similarly. The function  is one-to-one over the interval , as we see in Figure 5.3.8:

y = xcos−1

Example 5.15
(cos )cos−1 π

3

0 ≤ ≤ ππ
3

(cos ) =cos−1 π
3

π

3
5.3.3

Example 5.16

(cos )cos−1 4π

3

> π4π

3
5.3.3 cos = −4π

3
1
2

(cos ) = (− )cos−1 4π

3
cos−1 1

2

y 0 ≤ y ≤ π cos y = − 1
2

y = 2π

3
120∘

(cos ) =cos−1 4π

3
2π

3

(f(x)) = xf −1 x f f

x

y = xtan−1 y = arctan x

y = tan x (− , )π

2
π

2
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Figure 5.3.8 

The graph of  is shown below in Figure 5.3.9. Notice that the vertical asymptotes for  become
horizontal asymptotes for . Note also the symmetry about the line  with the graph of .

Figure 5.3.9 Graph of 

Thus,  is a function whose domain is the set of all real numbers and whose range is the interval . In other
words:

Find .

Solution

Since , we know that , by Equation .

y = tan x with x restricted to  (− , )π

2
π

2

y = xtan−1 y = tan x

y = xtan−1 y = x y = tan x

y = xtan−1

y = xtan−1 (− , )π
2

π
2

(tan y) tan−1

tan ( x) tan−1

=  y

=  x

for − < y <π

2
π

2

for all real x

(5.3.5)

(5.3.6)

Example 5.17
(tan )tan−1 π

4

− ≤ ≤π

2
π

4
π

2
(tan ) =tan−1 π

4

π

4
5.3.5
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Find .

Solution

Since , we can not use Equation . But we know that . Thus,  is, by
definition, the angle  such that  and . That angle is . Thus, .

Find the exact value of .

Solution

Let . We know that , so since ,  must be in QIV. Hence .
Thus,

Note that we took the positive square root above since . Thus, .

Show that  for .

Solution

When , the Equation holds trivially, since

Now suppose that . Let . Then  is in QI and . Draw a right triangle with an angle  such
that the opposite leg has length  and the hypotenuse has length , as in Figure 5.3.10 (note that this is possible since 

). Then . By the Pythagorean Theorem, the adjacent leg has length . Thus, 
.

Figure 5.3.10

If  then  is in QIV. So we can draw the same triangle except that it would be "upside down'' and
we would again have , since the tangent and sine have the same sign (negative) in QIV. Thus, 

 for .

Example 5.18
(tan π)tan−1

π > π

2
5.3.5 tan π = 0 (tan π) = 0tan−1 tan−1

y − ≤ y ≤π

2
π

2
tan y = 0 y = 0 (tan π) =tan−1 0

Example 5.19

cos ( (− ))sin−1 1
4

θ = (− )sin−1 1
4

− ≤ θ ≤π
2

π
2

sin θ = − < 01
4

θ cos θ > 0

θ  =  1  −   θ  =  1  −     =   ⇒ cos θ  =    .cos2 sin2 (− )
1

4

2
15

16

15
−−

√

4

cos θ > 0 cos ( (− )) =sin−1 1
4

15
−−

√

4

Example 5.20

tan ( x) =sin−1 x

1 −x2
− −−−−

√
−1 < x < 1

x = 0

tan ( 0)  =   tan 0  =  0  =    .sin−1 0

1 −02
− −−−−

√

0 < x < 1 θ = xsin−1 θ sin θ = x θ

x 1

0 < x < 1 sin θ = = xx

1
1 −x2
− −−−−

√

tan θ = x

1−x2√

−1 < x < 0 θ = xsin−1

tan θ = x

1−x2√

tan ( x) =sin−1 x

1 −x2
− −−−−

√
−1 < x < 1
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The inverse functions for cotangent, cosecant, and secant can be determined by looking at their graphs. For example, the
function  is one-to-one in the interval , where it has a range equal to the set of all real numbers. Thus, the
inverse cotangent  is a function whose domain is the set of all real numbers and whose range is the interval 

. In other words:

The graph of  is shown below in Figure 5.3.11.

Figure 5.3.11 Graph of 

Similarly, it can be shown that the inverse cosecant  is a function whose domain is  and whose range is 
, . Likewise, the inverse secant  is a function whose domain is  and whose range is 

, .

It is also common to call , , and  the arc cotangent, arc cosecant, and arc secant, respectively, of .
The graphs of  and  are shown in Figure 5.3.12:

Figure 5.3.12

y = cot x (0, π)
y = xcot−1

(0, π)

(cot y) cot−1

cot ( x) cot−1

=  y

=  x

for 0 < y < π

for all real x

(5.3.7)

(5.3.8)

y = xcot−1

y = xcot−1

y = xcsc−1 |x| ≥ 1
− ≤ y ≤π

2
π
2

y ≠ 0 y = xsec−1 |x| ≥ 1

0 ≤ y ≤ π y ≠ π

2

(csc y) csc−1

csc ( x) csc−1

=  y

=  x

for − ≤ y ≤ , y ≠ 0
π

2

π

2
for |x| ≥ 1

(5.3.9)

(5.3.10)

(sec y) sec−1

sec ( x) sec−1

=  y

=  x

for 0 ≤ y ≤ π, y ≠
π

2
for |x| ≥ 1

(5.3.11)

(5.3.12)

xcot−1 xcsc−1 xsec−1 x

y = xcsc−1 y = xsec−1
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Prove the identity .

Solution:

Let . Using relations from Section 1.5, we have

by Equation . So since  for all , this means that . Thus, 
. Now, we know that , so , i.e. 

 is in the restricted subset on which the tangent function is one-to-one. Hence, 
 implies that , which proves the identity.

Is  an identity?

Solution

In the tangent addition Equation , let  and . Then

by definition of the inverse tangent. However, recall that  for all real numbers . So in particular, we

must have . But it is possible that  is not in the interval . For

example,

And we see that . So the Equation is only true

when .

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

Example 5.21
x + x  =  tan−1 cot−1 π

2

θ = xcot−1

tan ( −θ)   =   −tan (θ − )   =   cot θ  =   cot ( x)  =  x ,π

2
π

2
cot−1

5.3.8 tan ( x) = xtan−1 x tan ( x) = tan ( −θ)tan−1 π

2

tan ( x) = tan ( − x)tan−1 π

2
cot−1 0 < x < πcot−1 − < − x <π

2
π

2
cot−1 π

2

− xπ

2
cot−1

tan ( x) = tan ( − x)tan−1 π

2
cot−1 x = − xtan−1 π

2
cot−1

Example 5.22

a + b  =   ( )tan−1 tan−1 tan−1 a +b

1 −ab

tan (A +B) =
tan A + tan B

1 − tan A  tan B
A = atan−1 B = btan−1

tan ( a + b) tan−1 tan−1

a + b tan−1 tan−1

=  
tan ( a) + tan ( b)tan−1 tan−1

1 − tan ( a)  tan ( b)tan−1 tan−1

=   by Equation 5.3.6, so it seems that we have
a +b

1 −ab

=   ( )tan−1 a +b

1 −ab

− < x <π

2
tan−1 π

2
x

− < ( ) <π

2
tan−1 a+b

1−ab

π

2
a + btan−1 tan−1 (− , )π

2
π

2

1 + 2  =  1.892547  >   ≈ 1.570796 .tan−1 tan−1 π

2

( ) = (−3) = −1.249045 ≠ 1 + 2tan−1 1+2
1−(1)(2)

tan−1 tan−1 tan−1

− < a + b <π

2
tan−1 tan−1 π

2
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5.E: Graphing and Inverse Functions (Exercises)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for
college students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is
taken than usual. Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

5.1 Exercise
For Exercises 1-12, draw the graph of the given function for .

5.1.1 

5.1.2 

5.1.3 

5.1.4 

5.1.5 

5.1.6 

5.1.7 

5.1.8 

5.1.9 

5.1.10 

5.1.11 

5.1.12 

5.1.13 We can extend the unit circle definition of the sine and cosine functions to all six trigonometric functions. Let  be a
point in QI on the unit circle, so that the line segment  in Figure 5.1.10 has length  and makes an acute angle  with the
positive -axis. Identify each of the six trigonometric functions of  with exactly one of the line segments in Figure 5.1.10,
keeping in mind that the radius of the circle is . To get you started, we have  (why?).

Figure 5.1.10

0 ≤ x ≤ 2π

y = −cos x

y = 1 +sin x

y = 2 −cos x

y = 2 −sin x

y = −tan x

y = −cot x

y = 1 +sec x

y = −1 −csc x

y = 2 sin x

y = −3 cos x

y = −2 tan x

y = −2 sec x

P

OP
¯ ¯¯̄¯̄¯̄

1 θ

x θ

1 sin θ = MP
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5.1.14 For Exercise 13, how would you draw the line segments in Figure 5.1.10 if  was in QII? Recall that some of the
trigonometric functions are negative in QII, so you will have to come up with a convention for how to treat some of the line
segment lengths as negative.

5.1.15 For any point  on the unit circle and any angle , show that the point  defined by 
 is also on the unit circle. What is the geometric interpretation of 

? Also, show that  and .

5.2 Exercise
For Exercises 1-12, find the amplitude, period, and phase shift of the given function. Then graph one cycle of the function,
either by hand or by using Gnuplot (see Appendix B).

5.2.1 

5.2.2 

5.2.3 

5.2.4 

5.2.5 

5.2.6 

5.2.7 

5.2.8 

5.2.9 

5.2.10 

5.2.11 

5.2.12 

5.2.13 For the function  in Example 5.8, for which values of  does the function reach its maximum value ,
and for which values of  does it reach its minimum value ?

5.2.14 For the function  in Example 5.9, for which values of  does the function reach its maximum
value , and for which values of  does it reach its minimum value ? You can restrict your answers to be between  and 

.

5.2.15 Graph the function  from  to , either by hand or by using Gnuplot. What are the amplitude and
period of this function?

5.2.16 The current  in an AC electrical circuit at time  is given by , and the voltage  is given by 
, where  and  are constants. Sketch one cycle of both  and  together on the same

graph (i.e. on the same set of axes). Are the current and voltage in phase or out of phase?

5.2.17 Repeat Exercise 16 with  the same as before but with .

θ

(x, y) α (x, y)Rα

(x, y) = (x cos α − y sin α, x sin α + y cos α)Rα

(x, y)Rα ( (x, y)) = (x, y)R−α Rα ( (x, y)) = (x, y)Rβ Rα Rα+β

y = 3 cos πx

y = sin (2πx −π)

y = −sin (5x +3)

y = 1 +8 cos (6x −π)

y = 2 +cos (5x +π)

y = 1 −sin (3π −2x)

y = 1 −cos (3π −2x)

y = 2 tan (x −1)

y = 1 −tan (3π −2x)

y = sec (2x +1)

y = 2 csc (2x −1)

y = 2 +4 cot (1 −x)

y = 2 sin ( )x2 x 2
x −2

y = 3 sin x +4 cos x x

5 x −5 0
2π

y = xsin2 x = 0 x = 2π

i(t) t ≥ 0 i(t) = sin ωtIm v(t)
v(t) = sin ωtVm > > 0Vm Im ω > 0 i(t) v(t)

i(t) v(t) = sin (ωt + )Vm
π

4
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5.2.18 Repeat Exercise 16 with  and .

For Exercises 19-21, find the amplitude and period of the given function. Then graph one cycle of the function, either by hand
or by using Gnuplot.

5.2.19 

5.2.20 

5.2.21 

5.2.22 Find the amplitude of the function .

For Exercises 23-25, find the period of the given function. Graph one cycle using Gnuplot.

5.2.23 

5.2.24 

5.2.25 

5.2.26 Let . Its graph for  from  to  is shown in Figure 5.2.14:

Figure 5.2.14 Modulated wave 

You can think of this function as  with a sinusoidally varying "amplitude''of . What is the period of this
function? From the graph it looks like the amplitude may be . Without finding the exact amplitude, explain why the
amplitude is in fact less than . The function above is known as a modulated wave, and the functions  form an
amplitude envelope for the wave (i.e. they enclose the wave). Use an identity from Section 3.4 to write this function as a sum
of sinusoidal curves.

5.2.27 Use Gnuplot to graph the function  from  to . What functions form its amplitude
envelope? (Note: Use  in Gnuplot.)

5.2.28 Use Gnuplot to graph the function  from  to . What functions form its amplitude
envelope? (Note: Use  in Gnuplot.)

5.2.29 Does the function  have a period? Explain your answer.

i(t) = − cos (ωt − )Im
π

3
v(t) = sin (ωt − )Vm

5π

6

y = 3 sin πx − 5 cos πx

y = −5 sin 3x + 12 cos 3x

y = 2 cos x + 2 sin x

y = 2 sin ( ) + cos ( )x2 x2

y = sin 3x − cos 5x

y = sin + 2 cosx
3

3x

4

y = 2 sin πx + 3 cos xπ

3

y = 0.5 sin x  sin 12x x 0 4π

y = 0.5 sinx sin12x

sin 12x 0.5 sin x

0.5
0.5 ± 0.5 sin x

y = sin 10xx2 x = −2π x = 2π

set samples 500

y = sin 80x1
x2 x = 0.2 x = π

set samples 500

y = sin πx + cos x
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5.2.30 Use Gnuplot to graph the function  from  to . What happens at ?

5.3 Exercise
For Exercises 1-25, find the exact value of the given expression in radians.

5.3.1 

5.3.2 

5.3.3 

5.3.4 

5.3.5 

5.3.6 

5.3.7 

5.3.8 

5.3.9 

5.3.10 

5.3.11 

5.3.12 

5.3.13 

5.3.14 

5.3.15 

5.3.16 

5.3.17 

5.3.18 

5.3.19 

5.3.20 

5.3.21 

5.3.22 

y = sin x
x x = −4π x = 4π x = 0

1tan−1

(−1)tan−1

0tan−1

1cos−1

(−1)cos−1

0cos−1

1sin−1

(−1)sin−1

0sin−1

(sin )sin−1 π

3

(sin )sin−1 4π

3

(sin (− ))sin−1 5π
6

(cos )cos−1 π

7

(cos (− ))cos−1 π

10

(cos )cos−1 6π
5

(tan )tan−1 4π

3

(tan (− ))tan−1 5π

6

(cot )cot−1 4π

3

(csc (− ))csc−1 π

9

(sec )sec−1 6π

5

cos ( ( ))sin−1 5
13

cos ( (− ))sin−1 4
5
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5.3.23 

5.3.24 

5.3.25 

For Exercises 26-33, prove the given identity.

5.3.26 

5.3.27 

5.3.28 

5.3.29 

5.3.30 

5.3.31 

5.3.32  for 

5.3.33  for 

5.3.34 In Example 5.22 we showed that the formula  does not always hold. Does

the formula , which was part of that example, always hold? Explain your answer.

5.3.35 Show that .

5.3.36 Show that .

5.3.37 Figure 5.3.13 shows three equal squares lined up against each other. For the angles , , and  in the picture, show that 
. (Hint: Consider the tangents of the angles.)

Figure 5.3.13 Exercise 37

5.3.38 Sketch the graph of .

5.3.39 Write a computer program to solve a triangle in the case where you are given three sides. Your program should read in
the three sides as input parameters and print the three angles in degrees as output if a solution exists. Note that since most
computer languages use radians for their inverse trigonometric functions, you will likely have to do the conversion from
radians to degrees yourself in the program.

+sin−1 3
5

sin−1 4
5

+sin−1 5
13

cos−1 5
13

+tan−1 3
5

cot−1 3
5

cos ( x)  =  sin−1 1 −x2− −−−−
√

sin ( x)  =  cos−1 1 −x2
− −−−−

√

x + x  =  sin−1 cos−1 π

2

x + x  =  sec−1 csc−1 π

2

(−x)  =   − xsin−1 sin−1

(−x) + x  =  πcos−1 cos−1

x  =    cot−1 tan−1 1
x

x > 0

x +   =    tan−1 tan−1 1
x

π

2
x > 0

a + b  =   ( )tan−1 tan−1 tan−1 a +b

1 −ab

tan ( a + b)  =  tan−1 tan−1 a +b

1 −ab

+   =  tan−1 1
3

tan−1 1
5

tan−1 4
7

+   =  tan−1 1
4

tan−1 2
9

tan−1 1
2

α β γ

α = β +γ

y = 2xsin−1
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CHAPTER OVERVIEW
6: ADDITIONAL TOPICS

6.1: SOLVING TRIGONOMETRIC EQUATIONS
In Chapter 1 we were concerned only with finding a single solution (say, between  ). In
this section we will be concerned with finding the most general solution to such trigonometric
equations.

6.2: NUMERICAL METHODS IN TRIGONOMETRY
We were able to solve the trigonometric equations in the previous section fairly easily, which in
general is not the case. Instead, we have to resort to numerical methods, which provide ways of
getting successively better approximations to the actual solution(s) to within any desired degree of
accuracy.

6.3: COMPLEX NUMBERS
There is no real number  such that . However, it turns out to be useful to invent such a number, called the imaginary unit
and denoted by the letter i.

6.4: POLAR COORDINATES
Suppose that from the point (1,0) in the xy-coordinate plane we draw a spiral around the origin, such that the distance between any
two points separated by  along the spiral is always 1, as in Figure 6.4.1. We can not express this spiral as  for some
function  in Cartesian coordinates, since its graph violates the vertical rule. However, this spiral would be simple to describe using
the polar coordinate system.

6.E: ADDITIONAL TOPICS (EXERCISES)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for college
students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is taken than usual.
Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

0◦ and 90◦

x x2 = −1

360∘
y = f(x)

f
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6.1: Solving Trigonometric Equations
An equation involving trigonometric functions is called a trigonometric equation. For example, an equation like

which we encountered in Chapter 1, is a trigonometric equation. In Chapter 1 we were concerned only with finding a single
solution (say, between  and ). In this section we will be concerned with finding the most general solution to such
equations.

To see what that means, take the above equation . Using the  calculator button in degree mode, we get 
. However, we know that the tangent function has period  rad , i.e. it repeats every . Thus, there are

many other possible answers for the value of , namely , , , , 
, etc. We can write this in a more compact form:

This is the most general solution to the equation. Often the part that says "for , , , '' is omitted since it is
usually understood that  varies over all integers. The general solution in radians would be:

Solve the equation .

Solution:

Isolating  gives . Using the  calculator button in degree mode gives us , which is in
QIV. Recall that the reflection of this angle around the -axis into QIII also has the same sine. That is, .
Thus, since the sine function has period  rad , and since  does not differ from  by an integer multiple
of , the general solution is:

In radians, the solution is:

For the rest of this section we will write our solutions in radians.

Solve the equation .

Solution:

Isolating  gives us

and since the period of cosine is , we would add  to each of those angles to get the general solution. But notice that

tan A  =  0.75 ,

0∘ 90∘

tan A = 0.75 tan−1

A = 36.87∘ π = 180∘ 180∘

A +36.87∘ 180∘ −36.87∘ 180∘ +36.87∘ 360∘ −36.87∘ 360∘

+36.87∘ 540∘

A  =   + k for k = 0, ± 1, ± 2, . . .36.87∘ 180∘

k = 0 ± 1 ± 2 . . .
k

A  =  0.6435 + πk for k = 0, ± 1, ± 2, . . .

Example 6.1
2 sin θ + 1  =  0

sin θ sin θ  =   − 1
2

sin−1 θ = −30∘

y sin = −210∘ 1
2

2π = 360∘ −30∘ 210∘

360∘

for k = 0, ± 1, ± 2, . . .θ  =   − + k and + k30∘ 360∘ 210∘ 360∘

for k = 0, ± 1, ± 2, . . .θ  =   − + 2πk and +2πk
π

6

7π

6

Example 6.2
2 θ − 1  =  0cos2

θcos2

θ  =   ⇒ cos θ  =   ± ⇒ θ  =   ,   ,   ,    ,cos2 1

2

1

2
–

√

π

4

3π

4

5π

4

7π

4

2π 2πk
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the above angles differ by multiples of . So since every multiple of  is also a multiple of , we can combine those
four separate answers into one:

Solve the equation .

Solution:

Isolating  gives us

which is impossible. Thus, there is .

Solve the equation .

Solution:

The idea here is to use identities to put everything in terms of a single trigonometric function:

The last equation looks more complicated than the original equation, but notice that it is actually a quadratic equation:
making the substitution , we have

by the quadratic formula from elementary algebra. But , so it is impossible that .
Thus, we must have . Hence, there are two possible solutions:  rad in QI and its reflection 

 rad around the -axis in QII. Adding multiples of  to these gives us the general solution:

Solve the equation .

Solution:

Trying the same method as in the previous example, we get

π

2
2π π

2

for k = 0, ± 1, ± 2, . . .θ  =   + k
π

4

π

2

Example 6.3
2 sec θ  =  1

sec θ

sec θ  =   ⇒ cos θ  =     =  2 ,
1

2

1

sec θ

no solution

Example 6.4
cos θ  =   tan θ

cos θ 

cos θ 

θ cos2

1 − θ sin2

0 

=   tan θ

=  
sin θ

cos θ

=   sin θ

=   sin θ

=   θ + sin θ − 1sin2

x = sin θ

+ x − 1  =  0 ⇒ x  =     =     =   −1.618 ,  0.618x2
−1 ± 1 −(4) (−1)

− −−−−−−−−−
√

2 (1)

−1 ± 5
–

√

2

−1.618 < −1 sinθ = x = −1.618
sin θ = x = 0.618 θ = 0.666

π −θ = 2.475 y 2π

for k = 0, ± 1, ± 2, . . .θ  =  0.666 + 2πk and 2.475 + 2πk

Example 6.5
sin θ  =   tan θ
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plus multiples of . So since the above angles are multiples of , and every multiple of  is a multiple of , we can
combine the two answers into one for the general solution:

Solve the equation .

Solution:

The idea here is to solve for  first, using the most general solution, and then divide that solution by . So since 
, there are two possible solutions for :  in QI and its reflection  around the -axis in

QIV. Adding multiples of  to these gives us:

So dividing everything by  we get the general solution for :

Solve the equation .

Solution:

Here we use the double-angle formula for sine:

sin θ 

sin θ 

sin θ  cos θ 

sin θ  cos θ − sin θ 
sin θ (cos θ − 1) 

=   tan θ

=  
sin θ

cos θ
=   sin θ

=  0
=  0

⇒ sin θ  =  0 or cos θ  =  1
⇒ θ  =  0 ,  π or θ  =  0

⇒ θ  =  0 ,  π ,

2π π 2π π

for k = 0, ± 1, ± 2, . . .θ  =  πk

Example 6.6
cos 3θ  =   1

2

3θ 3
=cos−1 1

2
π
3

3θ 3θ = π
3

−3θ = − π
3

x

2π

3θ  =   ± + 2πk for k = 0, ± 1, ± 2, . . .
π

3

3 θ

for k = 0, ± 1, ± 2, . . .θ  =   ± + k
π

9

2π

3

Example 6.7
sin 2θ  =   sin θ

sin 2θ 
2 sinθ  cos θ 

sin θ (2 cos θ − 1) 

=   sin θ

=   sin θ

=  0

⇒ sin θ  =  0 or cos θ  =  
1

2

⇒ θ  =  0 ,  π or θ  =   ±
π

3

⇒ for k = 0, ± 1, ± 2, . . .θ  =  πk and ± + 2πk
π

3
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Figure 6.1.1
Solution:
We will use the technique which we discussed in Chapter 5 for finding the amplitude of a combination of sine and cosine
functions. Take the coefficients  and  of  and , respectively, in the above equation and make them the
legs of a right triangle, as in Figure 6.1.1. Let  be the angle shown in the right triangle. The leg with length  means
that the angle  is above the -axis, and the leg with length  means that  is to the right of the -axis. Hence, 
must be in QI. The hypotenuse has length  by the Pythagorean Theorem, and hence  and 

. We can use this to transform the equation to solve as follows:

Now, since  and  is in QI, the most general solution for  is  for , , , .

So since we needed to add multiples of  to the solutions  and  anyway, the most general solution for  is:

Note: In Example 6.8 if the equation had been  then we still would have used a right triangle with
legs of lengths  and , but we would have used the sine addition formula instead of the subtraction formula.

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

2 3 sin θ −cos θ

ϕ 3 > 0
ϕ x 2 > 0 ϕ y ϕ

13
−−

√ cos ϕ = 2
13√

sin θ = 3

13√

2 sin θ − 3 cos θ 

( sin θ − cos θ)  13
−−

√ 2
13√

3
13√

(cos ϕ sin θ − sin ϕ cos θ) 13
−−

√

sin (θ −ϕ) 13
−−

√

sin (θ −ϕ) 

=  1

=  1

=  1

=  1 (by the sine subtraction formula)

=   1
13√

⇒ θ −ϕ  =  0.281 or θ −ϕ  =  π −0.281 = 2.861
⇒ θ  =  ϕ + 0.281 or θ  =  ϕ + 2.861

cos ϕ = 2
13√

ϕ ϕ ϕ = 0.983 +2πk k = 0 ± 1 ± 2 . . .

2π 0.281 2.861 θ

θ  =  0.983 + 0.281 + 2πk and 0.983 + 2.861 + 2πk

⇒ for k = 0, ± 1, ± 2, . . .θ  =  1.264 + 2πk and 3.844 + 2πk

2 sin θ + 3 cos θ  =  1
2 3
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6.2: Numerical Methods in Trigonometry
We were able to solve the trigonometric equations in the previous section fairly easily, which in general is not the case. For
example, consider the equation

Figure 6.2.1 

Unfortunately there is no trigonometric identity or simple method which will help us here. Instead, we have to resort to
numerical methods, which provide ways of getting successively better approximations to the actual solution(s) to within any
desired degree of accuracy. There is a large field of mathematics devoted to this subject called numerical analysis. Many of the
methods require calculus, but luckily there is a method which we can use that requires just basic algebra. It is called the secant
method, and it finds roots of a given function , i.e. values of  such that . A derivation of the secant method is
beyond the scope of this book, but we can state the algorithm it uses to solve :

1. Pick initial points  and  such that  and  (i.e.
the solution is somewhere between  and ).

2. For , define the number  by

as long as , where  is the maximum amount of error desired (usually a very small
number).

3. The numbers , , , ,  will approach the solution  as we go through more iterations, getting as close as desired.

We will now show how to use this algorithm to solve the equation . The solution to that equation is the root of the
function . And we saw that the solution is somewhere in the interval . So pick  and .
Then  and , so that  (we are using radians, of course). Then by definition,

cos x  =  x . (6.2.1)

y = cos x and y = x

f(x) x f(x) = 0

f(x) = 0

x0 x1 <x0 x1 f( ) f( ) < 0x0 x1

x0 x1

n ≥ 2 xn

  =     −  xn xn−1

( − ) f( )xn−1 xn−2 xn−1

f( ) − f( )xn−1 xn−2

(6.2.2)

| − | >xn−1 xn−2 ϵerror > 0ϵerror

x0 x1 x2 x3 . . . x

cos x = x

f(x) = cos x −x [0, 1] = 0x0 = 1x1

f(0) = 1 f(1) = −0.4597 f( ) f( ) < 0x0 x1
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and so on. Using a calculator is not very efficient and will lead to rounding errors. A better way to implement the algorithm is
with a computer. Listing 6.1 below shows the code (secant.java) for solving  with the secant method, using the Java
programming language:

Listing 6.1 Program listing for secant.java

Lines 4-5 read in  and  as input parameters to the program.
Line 6 initializes the variable that will eventually hold the solution.
Line 7 sets the maximum error  to be . That is, our final answer will be within that (tiny!) amount of the real
solution.
Line 8 starts a loop of 9 iterations of the algorithm, i.e. it will create the successive approximations , , ,  to the real
solution, though in Line 9 we check to see if the two previous approximations differ by less than the maximum error. If they
do, we stop (since this means we have an acceptable solution), otherwise we continue.
Line 10 is the main step in the algorithm, creating  from  and .
Lines 11-12 set the new values of  and , respectively.
Lines 18-20 set the number of decimal places to show in the final answer to 50 (the default is 16) and then print the answer.
Lines 23-24 give the definition of the function .

Below is the result of compiling and running the program using  and :

 x2

 x3

=     − x1
( − ) f( )x1 x0 x1

f( ) − f( )x1 x0

=  1  − 
(1 − 0) f(1)

f(1) − f(0)

=  1  −  
(1 − 0) (−0.4597)

−0.4597 − 1
=  0.6851 ,

=     −  x2

( − ) f( )x2 x1 x2

f( ) − f( )x2 x1

=  0.6851  − 
(0.6851 − 1) f(0.6851)

f(0.6851) − f(1)

=  0.6851  − 
(0.6851 − 1) (0.0893)

0.0893 − (−0.4597)

=  0.7363 ,

cos x = x

x0 x1

ϵerror 1.0 × 10−50

x2 x3 . . . x10

xn xn−1 xn−2

xn−2 xn−1

f(x) = cos x −x

= 0x0 = 1x1
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Notice that the program only got up to , not . The reason is that the difference between  and  was small enough
(less than ) to stop at  and call that our solution. The last line shows that solution to 50 decimal places.

Since  is the solution of , you would get , so 
, and so on. This number  is called an attractive fixed point of the function . No matter

where you start, you end up getting ``drawn'' to it. Figure 6.2.2 shows what happens when starting at : taking the cosine
of  takes you to , and then successive cosines (indicated by the intersections of the vertical lines with the cosine curve)
eventually "spiral'' in a rectangular fashion to the fixed point (i.e. the solution), which is the intersection of  and 

.

Recall in Example 5.10 in Section 5.2 that we claimed that the maximum and minimum of the function 
were , respectively. We can show this by using the open-source program Octave. Octave uses a
successive quadratic programming method to find the minimum of a function . Finding the maximum of  is the same
as finding the minimum of  then multiplying by  (why?). Below we show the commands to run at the Octave
command prompt ( ) to find the minimum of . The command  says to use 

 as a first approximation of the number  where  is a minimum.

The output says that the minimum occurs when  and that the minimum is . To
find the maximum of , we find the minimum of  and then take its negative. The command  says to
use  as a first approximation of the number  where  is a maximum.

The output says that the maximum occurs when  and that the maximum is 
.

Recall from Section 2.4 that Heron's formula is adequate for "typical'' triangles, but will often have a problem when used in a
calculator with, say, a triangle with two sides whose sum is barely larger than the third side. However, you can get around this
problem by using computer software capable of handling numbers with a high degree of precision. Most modern computer
programming languages have this capability. For example, in the Python programming language (chosen here for simplicity)
the  module can be used to set any level of precision. Below we show how to get accuracy up to  decimal places
using Heron's formula for the triangle in Example 2.16 from Section 2.4, by using the python interactive command shell:

x8 x10 x8 x7

= 1.0 ×ϵerror 10−50 x8

x = 0.73908513321516... cos x = x cos (cos x) = cos x = x

cos (cos (cos x)) = cos x = x x cos x

x = 0

0 1

y = cos x

y = x

y = cos 6x +sin 4x

± 1.90596111871578

f(x) f(x)

−f(x) −1

octave:n> f(x) = cos 6x +sin 4x sqp(3,'f')

x = 3 x f(x)

x = 2.65792064609274 −1.90596111871578

f(x) −f(x) sqp(2,'f')

x = 2 x f(x)

x = 2.05446832062993

−(−1.90596111871578) = 1.90596111871578

decimal 50
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(Note: The triple arrow  is just a command prompt, not part of the code.) Notice in this case that we do get the correct
answer; the high level of precision eliminates the
rounding errors shown by many calculators when using Heron's formula.

Another software option is Sage, a powerful and free open-source mathematics package based on Python. It can be run on your
own computer, but it can also be run through a web interface: go to http://sagenb.org to create a free account, then once you
register and sign in, click the New Worksheet link to start entering commands. For example, to find the solution to 
in the interval , enter these commands in the worksheet textfield:

Click the evaluate link to display the answer: 

Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free
Documentation License, Version 1.2.

>>>

cos x = x

[0, 1]

0.7390851332151559
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6.3: Complex Numbers
There is no real number  such that . However, it turns out to be useful to invent such a number, called the
imaginary unit and denoted by the letter . Thus, , and hence . If  and  are real numbers, then a number
of the form  is called a complex number, and if  then it is called an imaginary number (and pure imaginary if 

 and ). The real number  is called the real part of the complex number , and  is called its imaginary
part.

What does it mean to add  to  in the definition  of a complex number, i.e. adding a real number and an imaginary
number? You can think of it as a way of extending the set of real numbers. If  then  (since  is
defined as ), so that every real number is a complex number. The imaginary part  in  can be thought of as a way of
taking the one-dimensional set of all real numbers and extending it to a two-dimensional set: there is a natural correspondence
between a complex number  and a point  in the (two-dimensional) -coordinate plane.

Before exploring that correspondence further, we will first state some fundamental properties of and operations on complex
numbers:

Let  and  be complex numbers. Then:

1.  if and only if  and  (i.e. the real parts are equal and the imaginary parts are equal)
2.  (i.e. add the real parts together and add the imaginary parts together)
3. 
4. 
5. 

6. 

The first three items above are just definitions of equality, addition, and subtraction of complex numbers. The last three items
can be derived by treating the multiplication and division of complex numbers as you would normally treat factors of real
numbers:

The fifth item is a special case of the multiplication formula:

The sixth item comes from using the previous items:

The conjugate  of a complex number  is defined as . Notice that  is
a real number,  is an imaginary number if , and  is a real

x = −1x2

i = −1i2 i = −1
−−−

√ a b

a+bi b ≠ 0
a = 0 b ≠ 0 a a+bi bi

a bi a+bi

b = 0 a+bi = a+0i = a 0i
0 bi a+bi

a+bi (a, b) xy

fundamental properties of and operations on complex numbers
a+bi c+di

a+bi  =  c+di a = c b = d 
(a+bi) + (c+di)  =  (a+c) + (b+d)i 
(a+bi) − (c+di)  =  (a−c) + (b−d)i
(a+bi) (c+di)  =  (ac−bd) + (ad+bc)i
(a+bi) (a−bi)  =   +a2 b2

  =  
a+bi

c+di

(ac+bd) + (bc−ad)i

+c2 d2

(a+bi) (c+di)  =  a (c+di) + bi (c+di)

=  ac + adi + bci + bd   =  ac + adi + bci + bd(−1)i2

=  (ac−bd) + (ad+bc)i

(a+bi) (a−bi)  =  ((a)(a) −(b)(−b)) + ((a)(−b) +(b)(a))i

=  ( + ) + (−ab+ba)i  =  ( + ) + 0ia2 b2 a2 b2

=   +a2 b2

 
a+bi

c+di
=   ⋅

a+bi

c+di

c−di

c−di

=  
(ac−b(−d)) + (a(−d) +bc)i

+c2 d2

=  
(ac+bd) + (bc−ad)i

+c2 d2

a+bi
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

a+bi = a−bia+bi
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

(a+bi) +   =  2a(a+bi)
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

(a+bi) −   =  2bi(a+bi)
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

b ≠ 0 (a+bi)   =   +(a+bi)
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

a2 b2
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number. So for a complex number ,  and thus we can define the modulus of  to be 
, which we denote by .

Let  and . Find , , , , , and .

Solution

Using our rules and definitions, we have:

We know that any point  in the -coordinate plane that is a distance  from the origin has coordinates 
and , where  is the angle in standard position as in Figure 6.3.1(a).

Figure 6.3.1

Let  be a complex number. We can represent  as a point in the complex plane, where the horizontal -axis
represents the real part of , and the vertical -axis represents the pure imaginary part of , as in Figure 6.3.1(b). The distance 
 from  to the origin is, by the Pythagorean Theorem, , which is just the modulus of . And we see from

Figure 6.3.1(b) that  and , where  is the angle formed by the positive -axis and the line segment
from the origin to . We call this angle  the argument of . Thus, we get the trigonometric form (sometimes called the
polar form) of the complex number :

For any complex number , we can write

z = a+bi z = +z̄̄̄ a2 b2 z

=z z̄̄̄
−−

√ +a2 b2
− −−−−−

√ |z|

Example 6.9
= −2 +3iz1 = 3 +4iz2 +z1 z2 −z1 z2 z1 z2 /z1 z2 | |z1 | |z2

+  z1 z2

−  z1 z2

 z1 z2

 
z1

z2

| | z1

| | z2

=  (−2 +3i) + (3 +4i)

=  1 +7i
=  (−2 +3i) − (3 +4i)

=   −5 − i

=  (−2 +3i) (3 +4i)

=  ((−2)(3) −(3)(4)) + ((−2)(4) +(3)(3))i

=   −18 + i

=  
−2 +3i

3 +4i

=  
(−2)(3) +(3)(4) + ((3)(3) −(−2)(4))i

+32 42

=   + i
6

25

17

25

=   (−2 +)2 32
− −−−−−−−−

√

=   13
−−

√

=   +32 42− −−−−−
√

=  5

(x, y) xy r > 0 x = r cos θ

y = r sin θ θ

z = x+yi z x

z y z

r z r = +x2 y2
− −−−−−

√ z

x = r cos θ y = r sin θ θ x

z θ z

z

z = x+yi
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The representation  is often abbreviated as:

In the special case , the argument  is undefined since . Also, note that the argument  can be
replaced by  or , depending on whether you are using degrees or radians, respectively, for , , 

, . Note also that for  with ,  must satisfy

Represent the complex number  in trigonometric form.

Figure 6.3.2

Solution:

Let , so that  and . Then  is in QIII, as we see in Figure 6.3.2. So since 
, we have . Also,

Thus, , or .

For complex numbers in trigonometric form, we have the following Equations for multiplication and division:

Let  and  be complex numbers. Then

The proofs of these Equations are straightforward:

by the addition Equations for sine and cosine. And

z 

r 

θ 

=  r (cos θ + i sin θ)  ,  where

=  |z|  =     and+x2 y2
− −−−−−

√

=  the argument of z .

(6.3.1)

z = r (cos θ + i sin θ)

z  =  r cis θ (6.3.2)

z = 0 = 0 +0i θ r = |z| = 0 θ

θ + k360∘ θ + πk k = 0 ± 1
± 2 . . . z = x+yi r = |z| θ

tan θ  =     ,   cos θ  =     ,   sin θ  =    .
y

x
x
r

y

r

Example 6.10
−2 − i

z = −2 − i = x+yi x = −2 y = −1 θ

tan θ = = =
y

x

−1
−2

1
2

θ = 206.6∘

r  =     =     =    .+x2 y2
− −−−−−

√ (−2 +(−1)2 )2
− −−−−−−−−−−

√ 5
–

√

−2 − i = (cos + i sin )5
–

√ 206.6∘ 206.6∘ cis5
–

√ 206.6∘

= (cos + i sin )z1 r1 θ1 θ1 = (cos + i sin )z2 r2 θ2 θ2

 z1 z2

 
z1

z2

=   (cos ( + ) + i sin ( + )) , andr1 r2 θ1 θ2 θ1 θ2

=   (cos ( − ) + i sin ( − )) if  ≠ 0.
r1

r2
θ1 θ2 θ1 θ2 z2

(6.3.3)

(6.3.4)

 z1 z2 =   (cos + i sin ) ⋅ (cos + i sin )r1 θ1 θ1 r2 θ2 θ2

=   [(cos   cos − sin   sin ) + i (sin   cos + cos   sin )]r1 r2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

=   (cos ( + ) + i sin ( + ))r1 r2 θ1 θ2 θ1 θ2
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by the subtraction Equations for sine and cosine, and since . QED

Note that Equations  and  say that when multiplying complex numbers the moduli are multiplied and the arguments
are added, while when dividing complex numbers the moduli are divided and the arguments are subtracted. This makes
working with complex numbers in trigonometric form fairly simple.

Let  and . Find  and .

Solution

By Equations  and  we have

For the special case when  in Equation , we have

and so

and continuing like this (i.e. by mathematical induction), we get:

For any integer ,

We define  and  for all integers . So by De Moivre's Theorem and Equation , for any 
 and integer  we get

 
z1

z2
=  

(cos + i sin )r1 θ1 θ1

(cos + i sin )r2 θ2 θ2

=   ⋅ ⋅
r1

r2

cos + i sinθ1 θ1

cos + i sinθ2 θ2

cos − i sinθ2 θ2

cos − i sinθ2 θ2

=   ⋅
r1

r2

(cos   cos + sin   sin ) + i (sin   cos − cos   sin )θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

+cos2 θ2 sin2 θ2

=   (cos ( − ) + i sin ( − ))
r1

r2
θ1 θ2 θ1 θ2

+ = 1cos2 θ2 sin2 θ2

6.3.3 6.3.4

Example 6.11
= 6 (cos + i sin )z1 70∘ 70∘ = 2 (cos + i sin )z1 31∘ 31∘ z1 z2

z1

z2

6.3.3 6.3.4

 z1 z2

 
z1

z2

=  (6) (2) (cos ( + ) + i sin ( + ))70∘ 31∘ 70∘ 31∘

=   (cos ( − ) + i sin ( − ))
6

2
70∘ 31∘ 70∘ 31∘

⇒  , and  =  12 (cos + i sin )z1 z2 101∘ 101∘

⇒  .  =  3 (cos + i sin )
z1

z2
39∘ 39∘

= = z = r (cos θ + i sin θ)z1 z2 6.3.3

 [r (cos θ + i sin θ)]
2

=  r ⋅ r (cos (θ+θ) + i sin (θ+θ))

=   (cos 2θ + i sin 2θ) ,r2

 [r (cos θ + i sin θ)] 3 =   ⋅ r (cos θ + i sin θ)[r (cos θ + i sin θ)] 2

=   (cos 2θ + i sin 2θ) ⋅ r (cos θ + i sin θ)r2

=   (cos (2θ+θ) + i sin (2θ+θ))r3

=   (cos 3θ + i sin 3θ) ,r3

Theorem 6.1 De Moivre's Theorem
n ≥ 1

  =   (cos nθ + i sin nθ) .[r (cos θ + i sin θ)] n rn (6.3.5)

= 1z0 = 1/z−n zn n ≥ 1 6.3.3
z = r (cos θ + i sin θ) n ≥ 1

 z−n =  
1

zn

=  
1 (cos + i sin )0∘ 0∘

(cos nθ + i sin nθ)rn

=   (cos ( −nθ) + i sin ( −nθ))
1

rn
0∘ 0∘

=   (cos (−nθ) + i sin (−nθ)) ,r−n
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and so De Moivre's Theorem in fact holds for all integers.

Find .

Solution

Since  (why?), by De Moivre's Theorem we have

We can use De Moivre's Theorem to find the  roots of a complex number. That is, given any complex number  and
positive integer , find all complex numbers  such that . Let . Since the cosine and sine
functions repeat every , we know that  for , , , . Now let 

 be an  root of . Then

Since the cosine and sine of  will repeat for , we get the following Equation for the  roots of :

For any nonzero complex number  and positive integer , the  distinct  roots of  are

for , , , , .

Note: An  root of  is usually written as  or . The number  in the above Equation is the usual real  root of
the real number .

Find the three cube roots of .

Solution:

Since , the three cube roots of  are:

Notice from Example 6.13 that the three cube roots of  are equally spaced points along the unit circle  in the complex
plane, as shown in Figure 6.3.3. We see that consecutive cube roots are  apart. In general, the   roots of a complex
number  will be equally spaced points along the circle of radius  in the complex plane, with consecutive roots separated
by .

Example 6.12
(1 + i)10

1 + i = (cos + i sin )2
–

√ 45∘ 45∘

(1 + i   =  ( (cos + i sin )  =   (0 + i (1))  =   ⋅ i  =    .)10 2
–

√ )10 450∘ 450∘ 210/2 25 32i

nth z

n w = zwn z = r (cos θ + i sin θ)
360∘ z = r (cos (θ+ k) + i sin (θ+ k))360∘ 360∘ k = 0 ± 1 ± 2 . . .

w = (cos + i sin )r0 θ0 θ0 nth z

  =  zwn ⇒   =  r (cos (θ+ k) + i sin (θ+ k))[ (cos + i sin )]r0 θ0 θ0
n 360∘ 360∘

⇒ (cos n + i sin n )  =  r (cos (θ+ k) + i sin (θ+ k))rn0 θ0 θ0 360∘ 360∘

⇒   =  r and n   =  θ+ krn0 θ0 360∘

⇒   =   and   =    .r0 r1/n θ0
θ+ k360∘

n

θ+ k360∘

n
k ≥ n nth z

z = r (cos θ + i sin θ) n n nth z

[cos ( ) + i sin ( )]r1/n θ+ k360∘

n

θ+ k360∘

n
(6.3.6)

k = 0 1 2 . . . n−1

nth z z1/n z√n r1/n nth

r = |z|

Example 6.13
i

i = 1 (cos + i sin )90∘ 90∘ i

[cos ( ) + i sin ( )]  1
–

√3 + (0)90∘ 360∘

3

+ (0)90∘ 360∘

3

[cos ( ) + i sin ( )]  1
–

√3
+ (1)90∘ 360∘

3

+ (1)90∘ 360∘

3

[cos ( ) + i sin ( )]  1
–

√3 + (2)90∘ 360∘

3

+ (2)90∘ 360∘

3

=   cos + i sin  30∘ 30∘

=   cos + i sin  150∘ 150∘

=   cos + i sin  270∘ 270∘

=    ,+ i
3
–

√

2

1

2

=    ,− + i
3
–

√

2

1

2

=   −i

i |z| = 1
120∘ n nth

z |z|1/n

360∘

n
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Figure 6.3.3

In higher mathematics the Fundamental Theorem of Algebra states that every polynomial of degree  with complex
coefficients has  complex roots (some of which may repeat). In particular, every real number  has   roots (being the
roots of ). For example, the square roots of  are , and the square roots of  are .
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6.4: Polar Coordinates

Figure 6.4.2. We call the pair  the polar coordinates of , and the positive -axis is called the polar axis of this
coordinate system. Note that  for , , , , so (unlike for Cartesian coordinates) the polar
coordinates of a point are not unique.

FIGURE 6.4.2 Polar coordinates 

FIGURE 6.4.3 Negative 

In polar coordinates we adopt the convention that  can be negative, by defining  for any angle .

That is, the ray  is drawn in the opposite direction from the angle , as in Figure 6.4.3. When , the point 
 is the origin , regardless of the value of .

You may be familiar with graphing paper, for plotting points or functions given in Cartesian coordinates (sometimes also
called rectangular coordinates). Such paper consists of a rectangular grid. Similar graphing paper exists for plotting points and
functions in polar coordinates, similar to Figure 6.4.4.

(r,θ) P x

(r,θ) = (r,θ + k)360∘ k = 0 ± 1 ± 2 . . .

(r, θ)

r : (−r, θ)

r (−r, θ) = (r, θ+ )180∘ θ

OP
−→−

θ r = 0
(r, θ) = (0, θ) O θ
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FIGURE 6.4.4 Polar Coordinate Graph

The angle  can be given in either degrees or radians, whichever is more convenient. Radians are often preferred when
graphing functions in polar coordinates. The reason is that, unlike degrees, radians can be considered "unitless'' (as we
mentioned in Chapter 4). This is desirable when a function given in polar coordinates is expressed as  as a function of 
(similar to how, in Cartesian coordinates , functions are usually expressed as  as a function of ). For example, if a
function in polar coordinates is written as , then  would have the same units as . But  should be a unitless quantity,
hence using radians for  makes more sense in this case.

Express the spiral from Figure 6.4.1 in polar coordinates.

Solution:
We will use radians for . The goal is to find some equation involving  and  that describes the spiral. We see that

for . In fact, that last relation holds for any nonnegative real number  (why?). So for any ,

Hence, the spiral can be written as  for . The graph is shown in Figure 6.4.5, along with the Gnuplot

commands to create the graph.

θ

r θ

(x, y) y x

r = 2 θ r θ r

θ

Example 6.14

θ r θ

θ  =  0
θ  =  2π
θ  =  4π

θ  =  2π k

⇒ r  =  1
⇒ r  =  2
⇒ r  =  3

⋮
⇒ r  =  1 +k

k = 0, 1, 2, … k θ ≥ 0

θ  =  2π k ⇒ k  =   ⇒ r  =  1 +k  =  1 +  .
θ

2π
θ

2π

r  =  1 + θ

2π θ ≥ 0

https://libretexts.org/
https://math.libretexts.org/
https://www.gnu.org/licenses/fdl-1.3.en.html
https://math.libretexts.org/@go/page/3345?pdf


Michael Corral 2/3/2021 6.4.3
GNU Free

Documentation License
https://math.libretexts.org/@go/page/3345

FIGURE 6.4.5 

Note that when using the  command, Gnuplot will assume that the function being plotted is  as a function of
 (represented by the variable  in Gnuplot).

Figure 6.4.6 shows how to convert between polar coordinates and Cartesian coordinates. For a point with polar coordinates 
 and Cartesian coordinates :

FIGURE 6.4.6

Polar to Cartesian:

Cartesian to Polar:

Note that in Equation , if  then  or . Also, if  and  then the two possible solutions for 
 in the equation  are in opposite quadrants (for ). If the angle  is in the same quadrant as the point 

, then  (i.e.  is positive); otherwise  (i.e.  is negative).

Convert the following points from polar coordinates to Cartesian coordinates:
(a) ; (b) ; (c) 

Solution:
(a) Using Equation  with  and , we get:

r = 1 + θ

2π

set polar r

θ t

(r, θ) (x, y)

x  =  r cos θ y  =  r sin θ (6.4.1)

r  =   ± tan θ  =     if x ≠ 0  + x2 y2
− −−−−−−

√
y

x
(6.4.2)

6.4.2 x = 0 θ = π/2 θ = 3π/2 x ≠ 0 y ≠ 0
θ tan θ  =  

y

x 0 ≤ θ < 2π θ

(x, y) r =   + x2 y2− −−−−−−√ r r = −   + x2 y2− −−−−−−√ r

Example 6.15

(2, )30∘ (3, 3π/4) (−1, 5π/3)

6.4.1 r = 2 θ = 30∘

(x, y)  =  (r cos θ, r sin θ)  =  (2 cos , 2 sin )  =  (2 ⋅ , 2 ⋅ ) ⇒30∘ 30∘ 3√
2

1
2 (x, y)  =   ( , 1)3–√
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(b) Using Equation  with  and , we get:

(c) Using Equation  with  and , we get:

Convert the following points from Cartesian coordinates to polar coordinates:
(a) ; (b) 

Solution: 
(a) Using formula  with  and , we get:

Since  is in the same quadrant (QI) as the point , we can take
. Thus, .

Note that if we had used , then we would have .

(b) Using Equation  with  and , we get:

Since  is in the same quadrant (QIII) as the point , we can take
. Thus, .

\noindent Note that if we had used , then we would have .
\end{exmp}

Write the equation  in polar coordinates.

Solution: 
This is just the equation of a circle of radius  centered at the origin. Since , in polar
coordinates the equation can be written as simply .

Write the equation  in polar coordinates.

Solution: This is the equation of a circle of radius  centered at the point . Expanding the equation, we get:

6.4.1 r = 3 θ = 3π/4

(x, y)  =  (r cos θ, r sin θ)  =  (3 cos , 3 sin )   =  (3 ⋅ , 3 ⋅ ) ⇒3π
4

3π
4

−1
2√

1
2√

(x, y)  =  ( , )−3
2√

3
2√

6.4.1 r = −1 θ = 5π/3

(x, y)  =  (r cos θ, r sin θ)  =  (−1 cos , −1 sin )   =  (−1 ⋅ , −1 ⋅ ) ⇒5π
3

5π
3

1
2

− 3√
2

(x, y)  =  (− , )1
2

3√
2

Example 6.16

(3, 4) (−5, −5)

6.4.2 x = 3 y = 4

tan θ  =     =   ⇒ θ  =   or θ  =  
y

x

4
3

53.13∘ 233.13∘

θ = 53.13∘ (x, y) = (3, 4)
r  =   = = 5+x2 y2− −−−−−

√ +32 42− −−−−−
√ (r, θ) = (5, )53.13∘

θ = 233.13∘ (r, θ) = (−5, )233.13∘

6.4.2 x = −5 y = −5

tan θ  =     =     =  1 ⇒ θ  =   or θ  =  
y

x

−5
−5

45∘ 225∘

θ = 225∘ (x, y) = (−5, −5)

r  =   = = 5+x2 y2− −−−−−
√ (−5 +(−5)2 )2− −−−−−−−−−−

√ 2–√ (r, θ) = (5 , )2–√ 225∘

θ = 45∘ (r, θ) = (−5 , )2–√ 45∘

Example 6.17
+ = 9x2 y2

3 r = ± = ±+x2 y2− −−−−−√ 9
–√

r = 3

Example 6.18
+(y−4 = 16x2 )2

4 (0, 4)
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Why could we cancel  from both sides in the last step? Because the point  is on the circle, canceling  does not
eliminate  as a potential solution of the equation (since  would make ). Thus,
the equation is .

Write the equation  in polar coordinates.

Solution:
This is the equation of a line through the origin. So when , we know that . When , we get:

Since there is no restriction on , we could have  and , which would take care of the case  (since then 
, which is the same as . Thus, the equation is .

Prove that the distance  between two points  and  in polar coordinates is

Solution:
The idea here is to use the distance formula in Cartesian coordinates, then convert that to polar coordinates. So write

Then  and  are the Cartesian equivalents of  and , respectively. Thus, by the Cartesian
coordinate distance formula,

  +  (y−4  x2 )2

  +     −  8y  +  16 x2 y2

  +    x2 y2

 r2

r 

=  16
=  16
=  8y
=  8 r sin θ

=  8 sin θ

r (0, 0) r

r = 0 θ = 0∘ r = 8 sin θ = 8 sin = 00∘

r = 8 sin θ

Example 6.19
y = x

x = 0 y = 0 x ≠ 0

y 

 
y

x
tan θ 

θ 

=  x

=  1

=  1
=  45∘

r r = 0 θ = 45∘ x = 0
(x, y) = (0, 0) (r, θ) = (0, ))45∘ θ = 45∘

Example 6.20
d ( , )r1 θ1 ( , )r2 θ2

d  =     .  +     −  2 cos ( − )r2
1 r2

2 r1r2 θ1 θ2

− −−−−−−−−−−−−−−−−−−−−−−−
√

 x1

 x2

=   cosr1 θ1

=   cosr2 θ2

 y1

 y2

=   sinr1 θ1

=   sin  .r2 θ2

( , )x1 y1 ( , )x2 y2 ( , )r1 θ1 ( , )r2 θ2

 d2

 d2

=  ( −   + ( −x1 x2)2 y1 y2)2

=  ( cos − cos   +  ( sin − sinr1 θ1 r2 θ2)2 r1 θ1 r2 θ2)2

=     − 2 cos   cos   +     +     −  2 sin   sin   +  r2
1 cos2 θ1 r1r2 θ1 θ2 r2

2 cos2 θ2 r2
1 sin2 θ1 r1r2 θ1 θ2 r2

2 sin2 θ2

=   (   +   )  +   (   +   )  −  2 (cos   cos   +   sin   sin )r2
1 cos2 θ1 sin2 θ1 r2

2 cos2 θ2 sin2 θ2 r1r2 θ1 θ2 θ1 θ2

=     +    −  2 cos ( − ) ,r2
1 r2

2 r1r2 θ1 θ2
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so the result follows by taking square roots of both sides.

In Example 6.17 we saw that the equation  in Cartesian coordinates could be expressed as  in polar
coordinates. This equation describes a circle centered at the origin, so the circle is symmetric about the origin. In general, polar
coordinates are useful in situations when there is symmetry about the origin (though there are other situations), which arise in
many physical applications.
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6.E: Additional Topics (Exercises)
These are homework exercises to accompany Corral's "Elementary Trigonometry" Textmap. This is a text on elementary
trigonometry, designed for students who have completed courses in high-school algebra and geometry. Though designed for
college students, it could also be used in high schools. The traditional topics are covered, but a more geometrical approach is
taken than usual. Also, some numerical methods (e.g. the secant method for solving trigonometric equations) are discussed.

6.1 Exercise
For Exercises 1-12, solve the given equation (in radians).

6.1.1 

6.1.2 

6.1.3 

6.1.4 

6.1.5 

6.1.6 

6.1.7 

6.1.8 

6.1.9 

6.1.10 

6.1.11 

6.1.12 

6.2 Exercise
6.2.1 One obvious solution to the equation  is . Write a program to find the other solution(s), accurate to at
least within . You can use any programming language, though you may find it easier to just modify the code in
Listing 6.1 (only one line needs to be changed!). It may help to use Gnuplot to get an idea of where the graphs of 
and  intersect.

6.2.2 Repeat Exercise 1 for the equation .

6.2.3 Use Octave or some other program to find the maximum and minimum of .

6.3 Exercise
For Exercises 1-16, calculate the given expression.

6.3.1 

6.3.2 

tan θ + 1  =  0

2 cos θ + 1  =  0

sin 5θ + 1  =  0

2 θ − θ  =  1cos2 sin2

2 θ − cos 2θ  =  0sin2

2 θ + 3 sin θ  =  0cos2

θ + 2 sin θ  =   −1cos2

tan θ + cot θ  =  2

sin θ  =   cos θ

2 sin θ − 3 cos θ  =  0

3θ − 5 cos 3θ + 4  =  0cos2

3 sin θ − 4 cos θ  =  1

2 sin x = x x = 0
1.0 × 10−20

y = 2 sin x

y = x

sin x = x2

y = cos 5x −sin 3x

(2 +3i) + (−3 −2i)

(2 +3i) − (−3 −2i)
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6.3.3 

6.3.4 

6.3.5 

6.3.6 

6.3.7 

6.3.8 

6.3.9 

6.3.10 

6.3.11 

6.3.12 

6.3.13 

6.3.14 

6.3.15 

6.3.16 

For Exercises 17-24, prove the given identity for all complex numbers.

6.3.17 

6.3.18 

6.3.19 

6.3.20 

6.3.21 

6.3.22 

6.3.23 

6.3.24 

(2 +3i) ⋅ (−3 −2i)

(2 +3i)/(−3 −2i)

+(2 +3i)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

(−3 −2i)
¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

−(2 +3i)
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

(−3 −2i)
¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

(1 + i)/(1 − i)

| −3 +2i|

i3

i4

i5

i6

i7

i8

i9

i2009

= z( )z̄̄̄
¯ ¯¯̄ ¯̄

= ++z1 z2
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯ z1

¯ ¯¯̄¯ z2
¯ ¯¯̄¯

= −−z1 z2
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯ z1

¯ ¯¯̄¯ z2
¯ ¯¯̄¯

=  z1 z2
¯ ¯¯̄¯̄¯̄¯̄ z1

¯ ¯¯̄¯ z2
¯ ¯¯̄¯

=( )
z1

z2

¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄
z1
¯ ¯¯̄¯

z2
¯ ¯¯̄¯

|z| = | |z̄̄̄

| | = | | | |z1 z2 z1 z2

=
∣
∣
∣
z1

z2

∣
∣
∣

| |z1

| |z2
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For Exercises 25-30, put the given number in trigonometric form.

6.3.25 

6.3.26 

6.3.27 

6.3.28 

6.3.29 

6.3.30 

6.3.31 Verify that De Moivre's Theorem holds for the power .

For Exercises 32-35, calculate the given number.

6.3.32 

6.3.33 

6.3.34 

6.3.35 

6.3.36 Find the three cube roots of .

6.3.37 Find the three cube roots of .

6.3.38 Find the three cube roots of .

6.3.39 Find the three cube roots of .

6.3.40 Find the five fifth roots of .

6.3.41 Find the five fifth roots of .

6.3.42 Find the two square roots of .

6.3.43 Prove that if  is an  root of a real number , then so is .(Hint: Use Exercise 20.)

6.4 Exercise
For Exercises 1-5, convert the given point from polar coordinates to Cartesian coordinates.

6.4.1 

6.4.2 

2 +3i

−3 −2i

1 − i

−i

1

−1

n = 0

3 (cos + i sin ) ⋅ 2 (cos + i sin )14∘ 14∘ 121∘ 121∘

[3 (cos + i sin )14∘ 14∘ ]4

[3 (cos + i sin )14∘ 14∘ ]−4

3 (cos + i sin )14∘ 14∘

2 (cos + i sin )121∘ 121∘

−i

1 + i

1

−1

1

−1

−2 +2 i3
–

√

z nth a z̄̄̄

(6, )210∘

(−4, 3π)
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6.4.3 

6.4.4 

6.4.5 

For Exercises 6-10, convert the given point from Cartesian coordinates to polar coordinates.

6.4.6 

6.4.7 

6.4.8 

6.4.9 

6.4.10 

For Exercises 11-18, write the given equation in polar coordinates.

6.4.11 

6.4.12 

6.4.13 

6.4.14 

6.4.15 Graph the function  in polar coordinates.
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(2, 11π/6)

(6, )90∘

(−1, )405∘

(3, 1)

(−1, −3)

(0, 2)

(4, −2)

(−2, 0)

(x −3 + = 9)2 y2

y = −x

− = 1x2 y2

3 +4 −6x = 9x2 y2

r = 1 +2 cos θ
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